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Overview (1/3)

Quantified Boolean Formulas (QBF):
Propositional formulae with universally (∀) and (∃) existentially quantified variables.
In terms of QCSP: all variables have Boolean domains, all constraints are clauses.
E.g. ∃x∀y∃z. C1 ∧ C2 ∧ . . . ∧ Cn.
Solving a QBF: PSPACE-complete.
Applications in model checking, formal verification, testing,. . .

Incremental Solving:
In practice, often a sequence ψ0, ψ1, . . . , ψn of related formulas must be solved.
Try to exploit similarity between formulas in a sequence.
Information gathered when solving ψi might help to solve ψj with j > i .
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Overview (2/3): Non-Incremental QBF Solving

ψ0 −→ Solver −→ SAT/UNSAT

ψ1 −→ Solver −→ SAT/UNSAT
...

ψn −→ Solver −→ SAT/UNSAT

Given: sequence ψ0, ψ1, . . . , ψn of PCNFs to be solved.
Typical usage scenario: solver is called from the command line.
Each ψi is parsed from scratch (might incur non-negligible overhead).
Syntactic similarity between ψi and ψj with i < j is not exploited.
All information gathered when solving ψi is lost.
Potential repetition of work when solving ψi+1.
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Overview (3/3)

Incremental QBF Solving:
Overview of general-purpose incremental QBF solving.
Backtracking search procedure based on DPLL algorithm for QBF.
Proof system: derivation of learned constraints by resolution.
Challenge: which constraints can be reused in incremental solving?
Promising experimental results.

DepQBF:
Incremental QBF solver.
Free software: http://lonsing.github.io/depqbf/
Related work:

Incremental SAT solving by MiniSAT,. . . [ES03, NRS14].
Incremental QBF solving by QuBE: bounded model checking of partial
designs [MMLB12].
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QBF Syntax

QBF in Prenex Conjunctive Normal Form:
Given a Boolean formula φ(x1, . . . , xm) in CNF.
Quantifier prefix Q̂ := Q1B1Q2B2 . . .QmBm.
Quantifiers Qi ∈ {∀, ∃}.
Quantifier block Bi ⊆ {x1, . . . , xm} containing variables.
QBF in prenex CNF (PCNF): Q1B1Q2B2 . . .QmBm.φ(x1, . . . , xm).
Bi ≤ Bi+1: quantifier blocks are linearly ordered (extended to variables, literals).

Example
Given the CNF φ := (x ∨ ¬y) ∧ (¬x ∨ y).
Given the quantifier prefix Q̂ := ∀x∃y .
Prenex CNF: ψ := Q̂.φ = ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y).

Lonsing and Egly (TU Wien) Incremental QBF Solving 5 / 17



QBF Semantics (1/2)

Recursive Definition:
Given a PCNF ψ := Q1B1 . . .QmBm. φ.
Prerequisite: every variable is quantified in the prefix (no free variables).
Recursively assign the variables in prefix order (from left to right).
Base cases: the QBF > (⊥) is satisfiable (unsatisfiable).
ψ = ∀x . . . φ is satisfiable if ψ[¬x ] and ψ[x ] are satisfiable.
ψ = ∃x . . . φ is satisfiable if ψ[¬x ] or ψ[x ] is satisfiable.
In ψ[x ] (ψ[¬x ]), every occurrence of x in ψ is replaced by > (⊥).
Assignment A = {l1, . . . , ln}: if li ∈ A is a positive (negative) literal, then var(li) is
assigned to true (false).
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QBF Semantics (2/2)

Example (continued)
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable if

(1) ψ[x ] = ∃y .(y) and
(2) ψ[¬x ] = ∃y .(¬y) are satisfiable.

(1) ψ[x ] = ∃y .(y) is satisfiable since ψ[x , y ] = > is satisfiable.
(2) ψ[¬x ] = ∃y .(¬y) is satisfiable since ψ[¬x ,¬y ] = > is satisfiable.
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Search-Based QBF Solving with Constraint Learning

QBF-specific variant of DPLL
algorithm [DLL62, CGS98].
Basic idea: backtracking-based
implementation of semantics by
enumeration of assignments.
Constraint learning as a proof
system, based on enumerated
assignments A.
ψ[A] = ⊥: derive a new clause.
ψ[A] = >: derive a new cube,
i.e. conjunction of literals.
Derivation relation `.

Very high-level view, omitting crucial details:
bool bt_search (PCNF Qxψ, Assignment A)

/* 1. Simplify under given assignment. */
ψ′ := simplify(Qxψ[A]);

/* 2. Check base cases. */
if (ψ′ == ⊥)

return false;
if (ψ′ == >)

return true;
/* 3. Assignment generation, backtracking,

constraint learning */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});
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Constraint Learning by Example (1/2): Clause Derivations

Example
ψ := ∃x∀u∃y . (x ∨ u ∨ ¬y) ∧ (x ∨ u ∨ y) ∧ (¬x ∨ ¬u ∨ ¬y) ∧ (¬x ∨ ¬u ∨ y).

(x ∨ u ∨ ¬y) (x ∨ u ∨ y) (¬x ∨ ¬u ∨ ¬y) (¬x ∨ ¬u ∨ y)

Input clauses: ∀C ∈ ψ, by definition it holds that ψ ` C .
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Constraint Learning by Example (2/2): Cube Derivations

Example
ψ := ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y).

(x ∧ y)

ψ[x , y ] = ⊤

(¬x ∧ ¬y)

ψ[¬x ,¬y ] = ⊤

Model generation: for an assignment A with ψ[A] = >, it holds that ψ ` C where
C =

∧
l∈A l .
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Constraint Learning as a Proof System

Satisfiability:
Soundness of a learned cube C with ψ ` C : Q̂.φ ≡sat Q̂.(φ ∨ C).
Derivation of empty cube: ψ ` ∅ if and only if ψ satisfiable.

Unsatisfiability:
Soundness of a learned clause C with ψ ` C : Q̂.φ ≡sat Q̂.(φ ∧ C).
Derivation of empty clause: ψ ` ∅ if and only if ψ unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:
Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:
If ψ is modified to obtain ψ′, then if ψ ` C for a constraint C we might have ψ′ 0 C .
E.g.: if ψ′ 0 C for a clause C then in general ψ′ 6≡sat ψ

′ ∧ C .
Soundness: non-derivable (potentially invalid) constraints must be discarded.
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Incremental Solving

ψ0 −→ Solver −→ SAT/UNSAT
↓ LC ′0

ψ1:
φdel1 ,φadd1−→ Solver −→ SAT/UNSAT

...
↓ LC ′n−1

ψn:
φdeln ,φaddn−→ Solver −→ SAT/UNSAT

Typical usage scenario: solver is called as a library from an external program via API.
Reduced hard disk I/O overhead: only new parts are parsed.
LC ′i : subset of the constraints learned when solving ψj with j ≤ i .
Parts of the constraints learned when solving previous formulas can be reused.
Reused clause (cube) C : ψi+1 ≡sat ψi+1 ∧ C (ψi+1 ≡sat ψi+1 ∨ C) must still hold.
Potential speed up compared to non-incremental solving.
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Incremental Solving: Deleting Clauses from the Input Formula (1/2)

Example (continued)
ψ := ∃x∀u∃y . (x ∨ u ∨ ¬y) ∧ (x ∨ u ∨ y) ∧ (¬x ∨ ¬u ∨ ¬y) ∧ (¬x ∨ ¬u ∨ y).

∅

(x)

(x ∨ u)

(x ∨ u ∨ ¬y) (x ∨ u ∨ y)

(¬x)

(¬x ∨ ¬u)

(¬x ∨ ¬u ∨ ¬y) (¬x ∨ ¬u ∨ y)

Deleting clauses from ψi to obtain ψi+1: for a learned clause C with ψi ` C we
might have ψi+1 0 C and ψi+1 6≡sat ψi+1 ∧ C .
From ψi to ψi+1: the set of learned clauses must be maintained.
How to detect efficiently if ψi+1 ` C?
In practice: solvers do not keep the derivations of the learned constraints.
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(x)

(x ∨ u)

(x ∨ u ∨ ¬y) (x ∨ u ∨ y)

���HHH(¬x)

�����XXXXX(¬x ∨ ¬u)

(¬x ∨ ¬u ∨ ¬y) ((((((hhhhhh(¬x ∨ ¬u ∨ y)

Deleting clauses from ψi to obtain ψi+1: for a learned clause C with ψi ` C we
might have ψi+1 0 C and ψi+1 6≡sat ψi+1 ∧ C .
From ψi to ψi+1: the set of learned clauses must be maintained.
How to detect efficiently if ψi+1 ` C?
In practice: solvers do not keep the derivations of the learned constraints.

Lonsing and Egly (TU Wien) Incremental QBF Solving 13 / 17



Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)
ψ := ∃x∀u∃y .
(x ∨ u ∨ ¬y) ∧ (x ∨ u ∨ y) ∧ (¬x ∨ ¬u ∨ ¬y) ∧ (¬x ∨ ¬u ∨ y).

∅

(x)

(x ∨ u)

(x ∨ u ∨ ¬y) (x ∨ u ∨ y)

(¬x)

(¬x ∨ ¬u)

(¬x ∨ ¬u ∨ ¬y) (¬x ∨ ¬u ∨ y)
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Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)
ψ := ∃s1, s2, s3, s4, x∀u∃y .
(s1 ∨ x ∨ u ∨ ¬y) ∧ (s2 ∨ x ∨ u ∨ y) ∧ (s3 ∨ ¬x ∨ ¬u ∨ ¬y) ∧ (s4 ∨ ¬x ∨ ¬u ∨ y).

(s1 ∨ s2 ∨ s3 ∨ s4)

(s1 ∨ s2 ∨ x)

(s1 ∨ s2 ∨ x ∨ u)

(s1 ∨ x ∨ u ∨ ¬y) (s2 ∨ x ∨ u ∨ y)

(s3 ∨ s4 ∨ ¬x)

(s3 ∨ s4 ∨ ¬x ∨ ¬u)

(s3 ∨ ¬x ∨ ¬u ∨ ¬y) (s4 ∨ ¬x ∨ ¬u ∨ y)

Selector variables: fresh, leftmost existential variables added to each input clause.
Solving under predefined assignments to selector variables (called assumptions).
Setting selector variables to false (true): clauses are enabled (disabled).
“Empty clause” contains only selector variables, all of which are assigned false.
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Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)
ψ := ∃s1, s2, s3, s4, x∀u∃y .
(s1 ∨ x ∨ u ∨ ¬y) ∧ (s2 ∨ x ∨ u ∨ y) ∧ (s3 ∨ ¬x ∨ ¬u ∨ ¬y) ∧ (> ∨ ¬x ∨ ¬u ∨ y).

(s1 ∨ s2 ∨ s3 ∨ ⊤)

(s1 ∨ s2 ∨ x)

(s1 ∨ s2 ∨ x ∨ u)

(s1 ∨ x ∨ u ∨ ¬y) (s2 ∨ x ∨ u ∨ y)

(s3 ∨ ⊤ ∨ ¬x)

(s3 ∨ ⊤ ∨ ¬x ∨ ¬u)

(s3 ∨ ¬x ∨ ¬u ∨ ¬y) (⊤ ∨ ¬x ∨ ¬u ∨ y)

Setting selector variables to true disables (effectively deletes) input clauses. . .
. . . and also depending derived clauses.
Selector variables are common in incremental SAT solving.
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Incremental Solving: Adding Clauses to the Input Formula

Example (continued)
ψ := ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y).

∅

(x)

(x ∧ y)

ψ[x , y ] = ⊤

(¬x)

(¬x ∧ ¬y)

ψ[¬x ,¬y ] = ⊤

Adding clauses to ψi to obtain ψi+1: for a learned cube C with ψi ` C we might
have ψi+1 0 C and ψi+1 6≡sat ψi+1 ∨ C .
From ψi to ψi+1: the set of learned cubes must be maintained.
Problem: assignments in model generation rule might no longer be satisfying.
Selector variables not directly applicable (initial cubes are derived on-the-fly).
In DepQBF: only derivable initial cubes are kept.
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Incremental Solving: Adding Clauses to the Input Formula

Example (continued)
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�A∅

(x)

(x ∧ y)

ψ[x , y ] = ⊤

���HHH(¬x)

�����XXXXX(¬x ∧ ¬y)
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Adding the clause (x ∨ y) produces an unsatisfiable formula.
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Experiments

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 39.75× 106 34.03× 106 -14.40
ã: 1.71× 106 1.65× 106 -3.62
b: 117,019 91,737 -21.61
b̃: 10,322 8,959 -13.19
t: 100.15 95.36 -4.64
t̃: 4.18 2.83 -32.29

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 5.88× 106 1.29× 106 -77.94
ã: 103,330 8,199 -92.06
b: 31,489 3,350 -89.37
b̃: 827 5 -99.39
t: 30.29 9.78 -67.40
t̃: 0.50 0.12 -76.00

Average and median number of assignments (a and ã, respectively), backtracks (b, b̃), and wall clock time
(t, t̃) in seconds on fully solved sequences of PCNFs.

Left:
Solving sequences S = ψ0, . . . , ψ10 of PCNFs, where clauses are only added to ψi to
obtain ψi+1.
Learned constraints are discarded (discard LC) and correct ones are kept (keep LC).

Right:
Solving the reversed sequences S ′ = ψ9, . . . , ψ0 of PCNFs after the original sequence
S = ψ0, . . . , ψ9, ψ10 has been solved, where clauses are only deleted from ψi+1 to
obtain ψi .
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Conclusions

Incremental QBF Solving:
Useful for solving sequences of related formulas.
Benefits from similarity between formulas.
Tight integration into tool frameworks: library API, reduced I/O overhead.
Challenge: keeping learned constraints.
Further incremental QBF applications and case studies needed.

DepQBF:
Open source incremental QBF solver implemented in C.
API to add sets of clauses in a stack-based way (push/pop).
Related papers:

AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
ICMS 2014: API example, further experiments [LE14].

DepQBF Source Code: http://lonsing.github.io/depqbf/
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