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Overview (1/3)

Quantified Boolean Formulas (QBF):
m Propositional formulae with universally (V) and (3) existentially quantified variables.

m In terms of QCSP: all variables have Boolean domains, all constraints are clauses.
Eg IxVydz. GAGA...AC,.

m Solving a QBF: PSPACE-complete.
m Applications in model checking, formal verification, testing,. ..
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Overview (1/3)

Quantified Boolean Formulas (QBF):
m Propositional formulae with universally (V) and (3) existentially quantified variables.

m In terms of QCSP: all variables have Boolean domains, all constraints are clauses.
Eg IxVydz. GAGA...AC,.

m Solving a QBF: PSPACE-complete.
m Applications in model checking, formal verification, testing,. ..

Incremental Solving:
m In practice, often a sequence g, 91, ..., ¥, of related formulas must be solved.
m Try to exploit similarity between formulas in a sequence.

m Information gathered when solving v; might help to solve 1; with j > i.
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Overview (2/3): Non-Incremental QBF Solving

Yo — —» SAT/UNSAT
Y1 —> — SAT/UNSAT

Pn —> — SAT/UNSAT

Given: sequence o, 91, ..., ¥, of PCNFs to be solved.

Typical usage scenario: solver is called from the command line.

Each )i is parsed from scratch (might incur non-negligible overhead).
Syntactic similarity between ; and v); with i < j is not exploited.

All information gathered when solving ; is lost.

Potential repetition of work when solving ;1.
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Overview (3/3)

Incremental QBF Solving:
m Overview of general-purpose incremental QBF solving.
m Backtracking search procedure based on DPLL algorithm for QBF.

m Proof system: derivation of learned constraints by resolution.

Challenge: which constraints can be reused in incremental solving?

m Promising experimental results.
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Overview (3/3)

Incremental QBF Solving:
m Overview of general-purpose incremental QBF solving.
m Backtracking search procedure based on DPLL algorithm for QBF.
m Proof system: derivation of learned constraints by resolution.
m Challenge: which constraints can be reused in incremental solving?

m Promising experimental results.

DepQBF:
m Incremental QBF solver.
m Free software: http://lonsing.github.io/depgbf/

m Related work:

m Incremental SAT solving by MiniSAT,... [ES03, NRS14].
m Incremental QBF solving by QuBE: bounded model checking of partial
designs [MMLB12].
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QBF Syntax

QBF in Prenex Conjunctive Normal Form:
m Given a Boolean formula ¢(xi, ..., xm) in CNF.
m Quantifier prefix @ = QBB ... QB
m Quantifiers Q; € {V,3}.
m Quantifier block B; C {x1,...,Xxm} containing variables.
m QBF in prenex CNF (PCNF): Qi1Bi1@2B> ... QmBm.¢(x1, ..., Xm)-

m B; < Bj;1: quantifier blocks are linearly ordered (extended to variables, literals).

Example
m Given the CNF ¢ := (x V —y) A (—x V y).
m Given the quantifier prefix Q= Vx3dy.
m Prenex CNF: ¢ := Q.¢ = Vx3y. (x V—y) A (—x V y).
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QBF Semantics (1/2)

Recursive Definition:
m Given a PCNF ¢ := @Q1B1 ... QmBm. ¢.
m Prerequisite: every variable is quantified in the prefix (no free variables).
m Recursively assign the variables in prefix order (from left to right).
m Base cases: the QBF T () is satisfiable (unsatisfiable).
1 =Vx...¢ is satisfiable if ¥[-x] and ¢[x] are satisfiable.
m ¢ = Ix...¢ is satisfiable if [-x] or ¥[x] is satisfiable.
m In ¢[x] (¢[-x]), every occurrence of x in v is replaced by T ().

m Assignment A= {l,...,lh}: if ; € Ais a positive (negative) literal, then var(l;) is
assigned to true (false).
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QBF Semantics (2/2)

Example (continued)

The PCNF ¢ = VxJy.(x V =y) A (=x V y) is satisfiable if
(1) ¥[x] = 3y.(y) and
(2) ¥[-x] = y.(—y) are satisfiable.

(1) ¢[x] = Ty.(y) is satisfiable since ¥[x, y] = T is satisfiable.
(2) Y[—x] = Jy.(—y) is satisfiable since 1[—x, 7y] = T is satisfiable.
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Search-Based QBF Solving with Constraint Learning

m QBF-specific variant of DPLL
algorithm [DLL62, CGS98].

m Basic idea: backtracking-based
implementation of semantics by
enumeration of assignments.

m Constraint learning as a proof
system, based on enumerated
assignments A.

m [A] = L: derive a new clause.

m Y[A] = T: derive a new cube,
i.e. conjunction of literals.

m Derivation relation .

Lonsing and Egly (TU Wien)

Very high-level view, omitting crucial details:

bool bt_search (PCNF Qxt), Assignment A)
/* 1. Simplify under given assignment. */
Y i= simplify (Qxvy[A]);
/* 2. Check base cases. */

if (¢ == 1)
return false;
if (¢ = T)

return true;
/* 3. Assignment generation, backtracking,
constraint learning */
if (Q == 3
return bt_search (¢', A U {-x}) ||
bt_search (¢', A U {x});
if (Q == V)
return bt_search (¢', A U {—-x}) &&
bt_search (¢, A U {x});
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Constraint Learning by Example (1/2): Clause Derivations

Example

Y= 3xVudy. (xVuV-y)A(xVuVy)A(-xV-ouV-ay)A(-xV-ouVy).

(xVuVv-y) (xVuVvy) (=x VvV u Vv y) (=xV-uVy)

m Input clauses: YC € ¥, by definition it holds that ¢ - C.
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Constraint Learning by Example (1/2): Clause Derivations

Example
= 3IxVudy. (xVuV-ay)A(xVuVy)A(=xV-ouV-ay)A(=xV-uVy).

(xVuV-y) (xVuVvy) (=x V —u Vv -y) (=xV-uVy)

~N ~ 7

(x V u) (=x Vv —u)

m Input clauses: VC € 1, by definition it holds that ¢ - C.

m Resolution of clauses (informally): for Ci, & with ¥ = G, ¥ + G and x € G and
—x € (G, it holds that ¢ - C where C = G; ® G, is the resolvent of C; and G.
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Example
Y= 3IxVudy. (xVuV-ay)A(xVuVy)A(=xV-ouV-ay)A(-xV-ouVy).

(xVuV-y) (xVuVy) (=x VvV —u Vv y) (=xV-uVy)

~N 7

(x V u) (=x Vv —u)

(x) (=x)

m Input clauses: VC € 1, by definition it holds that ¢ - C.

m Resolution of clauses (informally): for Gi, G with ¢ + G, ¥ F G and x € G and
—x € @y, it holds that ¢ = C where C = Gi ® G, is the resolvent of C; and G,.

m Reduction of clauses: for Ci with ¢ F G, it holds that ¢ - C where C is obtained
by removing trailing universal literals from C by prefix ordering.
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Constraint Learning by Example (2/2): Cube Derivations

Example
P :=Vx3dy. (x V-y)A(—x Vy).
Yoyl =T  Plx,y] =T

(xAy) (=x A =y)

m Model generation: for an assignment A with )[A] = T, it holds that ¢ - C where
C=Neal
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Constraint Learning by Example (2/2): Cube Derivations

Example
P =Vx3y. (xV-y)A(-x Vy).

1/1[X,Y]:T "/)[_'Xv_‘)/]:—r
(xAy) (—x Ay)

|
(x) (=x)

m Model generation: for an assignment A with [A] = T, it holds that ¢) - C where

C=Ncal
m Reduction of cubes: for Ci with ¢ F G, it holds that ¢ = C where C is obtained by
removing trailing existential literals from C by prefix ordering.
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Constraint Learning by Example (2/2): Cube Derivations

Example
P :=Vx3y. (x Vay) A (-x Vy).

?ZJ[XJ]:T ’(/)[—\X,—\y]:T
(X/l\y) (ﬂX?ﬂy)
)

(x) (=x
\ /

0

m Model generation: for an assignment A with ¥[A] = T, it holds that ¢ - C where

C= /\/eA .
m Reduction of cubes: for Ci with ¥ I G, it holds that ¢ = C where C is obtained by
removing trailing existential literals from C by prefix ordering.

m Resolution of cubes (informally): for Ci, G with v - G, ¥ F G and x € G and
—x € @, it holds that ¢ - C where C = Gi ® G, is the resolvent of G and G,.
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Constraint Learning as a Proof System

Satisfiability:
m Soundness of a learned cube C with ¥ - C : Q.¢ =t Q.(qﬁv Q).
m Derivation of empty cube: 1 - 0 if and only if ¢ satisfiable.

Unsatisfiability:
= Soundness of a learned clause C with ¢ - C: @.¢ =t Q.(¢ A C).
m Derivation of empty clause: ¥ t () if and only if 1) unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

m Assignment generation drives the application of the proof rules.
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Constraint Learning as a Proof System

Satisfiability:
m Soundness of a learned cube C with ¥ - C : Q.¢ =t Q.(¢v Q).
m Derivation of empty cube: 1 - 0 if and only if ¢ satisfiable.

Unsatisfiability:
= Soundness of a learned clause C with ¢ - C: @.¢ =t Q.(¢ A C).
m Derivation of empty clause: ¥ t () if and only if 1) unsatisfiable.

Clause and Cube Learning in Search-Based QBF Solving:

m Assignment generation drives the application of the proof rules.

Clause and Cube Learning in Incremental Solving:
m If ¢ is modified to obtain %', then if ¥ - C for a constraint C we might have ¥’ ¥ C.
m E.g.: if ¢ ¥ C for a clause C then in general ¥ %zt ' A C.

m Soundness: non-derivable (potentially invalid) constraints must be discarded.
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Incremental Solving

Yo — [Solver | — SAT/UNSAT

LLCY
(ded,d)add
g —+ SAT/UNSAT
“l' Lcn 1

el padd
,,e N

e — SAT/UNSAT

Typical usage scenario: solver is called as a library from an external program via API.
Reduced hard disk I/O overhead: only new parts are parsed.

LC!: subset of the constraints learned when solving v; with j < i.

Parts of the constraints learned when solving previous formulas can be reused.
Reused clause (cube) C: tit1 =sar Yit1 A C (it1 =sar Yit1 V C) must still hold.

Potential speed up compared to non-incremental solving.
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Incremental Solving: Deleting Clauses from the Input Formula (1/2)

Example (continued)

Y :=3IxVudy. (xVuV-ay)A(xVuVy)A(=xV-ouV-ay)A(-xV-uVy).

(xVuVv-y) (xVuvVvy) (=x VvV —u Vv -y) (=xV-uVy)

~N 7 ~N 7

(x V u) (=x V —w)

(x) (=x)
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Incremental Solving: Deleting Clauses from the Input Formula (1/2)

Example (continued)

= 3AxVudy. (xVuVay)A(xVuVy)A(-xV-ouVay) A Cee—aly).

(xVuV-y) (xVuVy) (=x V —u Vv —y) (= 7y)
~N S ~
(XTU) I}T@I

(X)\ﬁ/

Deleting clauses from 1); to obtain ;+1: for a learned clause C with ¥; - C we
might have ¥jy1 ¥ C and Yit1 5—ésat Yir1 N\ C.

From 1); to 1it1: the set of learned clauses must be maintained.

m How to detect efficiently if ¥;1 F C?

In practice: solvers do not keep the derivations of the learned constraints.
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Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

1 = IxVudy.
(xVuVay)A(xVuVy)A(=xV-uV-ay)A(=xV-ouVy).

(xVuVv-y) (xVuvVvy) (=x VvV —u Vv -y) (=xV-uVy)

~N 7 ~N 7

(x V u) (=x Vv —u)

(x) (=x)
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Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

w = 351,52,53,54,xVu3y.
(st VxVuVay)A(ssVxVuVy)A(ssV-oxV-ouV-ay)A(ssV-oxV-ouVy).

(s1VxVuV-y) (2VxVuVy) (s3V—xV=uV-y) (saV—-xV-uVy)
(s1 Vs VxVu) (s3V sV —xV-w)
| |
(51\/52\/X) (S3\/$4\/“X)

\ /

(51 Vs VsVs)

m Selector variables: fresh, leftmost existential variables added to each input clause.
m Solving under predefined assignments to selector variables (called assumptions).
m Setting selector variables to false (true): clauses are enabled (disabled).

m “Empty clause” contains only selector variables, all of which are assigned false.
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Incremental Solving: Deleting Clauses from the Input Formula (2/2)

Example (continued)

w = 351,52,53,54,xVuEly.
(st VxVuVay)A(ssVxVuVy)A(ssV-oxV-ouV-ay)A(TV-oxV-ouVy).

(s1VxVuV-ay) (2VxVuVy) (s3V—xV=uV-y) (TV-xV-uVy)
(s1Vs2VxVu) (s3VTV-axV-u)
| |
(s1Vs2Vx) (s3V T V-x)

\ /

(51\/52\/S3VT)

m Setting selector variables to true disables (effectively deletes) input clauses. ..
® ...and also depending derived clauses.

m Selector variables are common in incremental SAT solving.
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Incremental Solving: Adding Clauses to the Input Formula

Example (continued)
P :=Vx3Jy. (x V-ay) A (=x Vy).

¢[X7}/]:T w["xvﬁ}/]:—l—

(x /l\ y) (=x /l\ -y)
(>) (—x)

N

0
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Incremental Solving: Adding Clauses to the Input Formula

Example (continued)

Y :=VxIy. (x Vay)A(=xVy)A(xVy).

wkf:T Mﬂqﬂ:L

(xAy) |

(x)
\\\ﬁ

Adding the clause (x V y) produces an unsatisfiable formula.

m Adding clauses to 1; to obtain ;;1: for a learned cube C with ; - C we might
have i1 ¥ C and ¥it1 Zsat Yir1 V C.

From t; to 1i;1: the set of learned cubes must be maintained.

Problem: assignments in model generation rule might no longer be satisfying.

Selector variables not directly applicable (initial cubes are derived on-the-fly).

In DepQBF: only derivable initial cubes are kept.
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Experiments

QBFEVAL'12-SR-Bloqqer

discard LC keep LC diff.(%)
3 39.75x10° 34.03 x 10°  -14.40
3 1.71 x 10° 1.65 x 10° -3.62
b: 117,019 91,737 -21.61
b: 10,322 8,959 -13.19
T 100.15 95.36 -4.64
f: 4.18 2.83 -32.29

Average and median number of assignments (2 and 3, respectively), backtracks (E, B), and wall clock time

(%, ©) in seconds on fully solved sequences of PCNFs.

Left:

m Solving sequences S = o, . .., 110 of PCNFs, where clauses are only added to 1), to
obtain ’L/),‘+1.

m Learned constraints are discarded (discard LC) and correct ones are kept (keep LC).
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Experiments

QBFEVAL'12-SR-Bloqqer QBFEVAL'12-SR-Bloqqer

discard LC keep LC diff.(%) discard LC keep LC diff.(%)
3 39.75x10° 34.03 x 10°  -14.40 3 5.88x10° 1.20x106 -77.94
3 1.71 x 10° 1.65 x 106 -3.62 3: 103,330 8,199 -92.06
b: 117,019 91,737 -21.61 b: 31,489 3,350 -89.37
b: 10,322 8,959 -13.19 b: 827 5 -99.39
T 100.15 95.36 -4.64 T 30.29 9.78 -67.40
f: 4.18 2.83 -32.29 f: 0.50 0.12 -76.00

Average and median number of assignments (2 and 3, respectively), backtracks (E, B), and wall clock time

(t, ) in seconds on fully solved sequences of PCNFs.

Left:

m Solving sequences S = 1y, . .., 110 of PCNFs, where clauses are only added to 1), to
obtain ’L/),‘+1.

m Learned constraints are discarded (discard LC) and correct ones are kept (keep LC).

Right:
m Solving the reversed sequences S’ = )y, ..., 1o of PCNFs after the original sequence
S = o, ..., %9, 10 has been solved, where clauses are only deleted from ;11 to
obtain ;.
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Conclusions

Incremental QBF Solving:
m Useful for solving sequences of related formulas.

m Benefits from similarity between formulas.

m Tight integration into tool frameworks: library API, reduced 1/O overhead.

m Challenge: keeping learned constraints.

m Further incremental QBF applications and case studies needed.
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Conclusions

Incremental QBF Solving:

m Useful for solving sequences of related formulas.

m Benefits from similarity between formulas.
m Tight integration into tool frameworks: library API, reduced 1/O overhead.
m Challenge: keeping learned constraints.
m Further incremental QBF applications and case studies needed.
DepQBF:

m Open source incremental QBF solver implemented in C.

m API to add sets of clauses in a stack-based way (push/pop).
m Related papers:

m AISC 2014 (accepted): case study of conformant planning by incremental QBF solving.
m ICMS 2014: API example, further experiments [LE14].

DepQBF Source Code: http://lonsing.github.io/depgbf/
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