A Theoretical Framework for Symbolic Quick Error Detection

FLORIAN LONSING SUBHASISH MITRA CLARK BARRETT

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020 Preprint: <u>https://arxiv.org/abs/2006.05449</u>

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

- "Have I written enough properties?" [Katz et al. CHARME'99].
- Challenge: making Spec complete.

• Spec: manual writing of implementation-specific properties.

- Spec: manual writing of implementation-specific properties.
- Model/design changes \rightarrow Spec to be adapted (manually).

- Spec: manual writing of implementation-specific properties.
- Model/design changes \rightarrow Spec to be adapted (manually).
- Completeness depending on Spec.

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).
- Self-consistency: universal property, no manual writing.

SQED: Industrial Strength

INFINEON case study: automotive IP versions [Singh et al DATE'19]

Traditional verification:

(Constrained) random simulation, directed tests, formal.

Our Contributions: Formal Proofs

- 1. Soundness: no spurious cex.
- 2. (Conditional) completeness: all bugs covered (BMC depth).
- 3. Formal framework: abstract processor model.

Self-Consistency

- Function f: equivalent inputs \rightarrow equivalent outputs.
- Functional congruence property:

$$\forall x, x' : x = x' \to f(x) = f(x')$$

Self-Consistency

• Processor Design M:

Self-Consistency

• Processor Design M:

HW designs have complex internal state (pipeline,...).

- State s_0 : mapping from locations \mathcal{L} to values.
- (Non-)architectural parts of $s_0 = (s_a, s_{na})$.
- \mathcal{L} : regs. and mem. locations, value $s_0(l) = s_a(l) = v$.

- Instruction i = (op, l, (l', l'')), one-step execution.
- Opcode op, input locations (l', l''), output location l.
- Transition: $T(s_0, i) = s_1, s_0 = (s_a, s_{na}), s_1 = (s_a', s_{na}').$

Example: register identifiers $\mathcal{L} = \{0, 1, ..., 31\}$ $\mathcal{L}_{0} = \{0, ..., 15\}$ $\mathcal{L}_{D} = \{16, ..., 31\}$ $L_{D}(l) = l + 16$

- Partition of \mathcal{L} : original and duplicate locations \mathcal{L}_0 , \mathcal{L}_D .
- Arbitrary, fixed bijective mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$.
- Self-consistency property based on mapping L_D.

Example: $i_0 = (ADD, l_{12}, (l_4, l_8))$ $L_D(l) = l + 16$ $i_D = (ADD, l_{28}, (l_{20}, l_{24}))$

- Original instruction $i_0 = (op, l, (l', l''))$.
- Duplicate $i_D = Dup(i_O) = (op, L_D(l), L_D(l', l'')).$

- Original instruction $i_0 = (op, l, (l', l''))$.
- Duplicate $i_D = Dup(i_O) = (op, L_D(l), L_D(l', l'')).$
- Original/duplicate i_0/i_D operates on $\mathcal{L}_0/\mathcal{L}_D$ only.

- Given L_D , state s_0 QED-consistent $\leftrightarrow s_0(\mathcal{L}_O) = s_0(\mathcal{L}_D)$.
- Matching values at original/duplicate locations.

- Given L_D , state s_0 QED-consistent $\leftrightarrow s_0(\mathcal{L}_O) = s_0(\mathcal{L}_D)$.
- Matching values at original/duplicate locations.
- Correct execution of i_O/i_D preserves QED-consistency.

 $QEDcons(s_0)$

QEDcons(s_{2n})

 $\mathbf{s}_0(\mathcal{L}_0) = \mathbf{s}_0(\mathcal{L}_D) \qquad \qquad \mathbf{s}_{2n}(\mathcal{L}_D) = \mathbf{s}_{2n}(\mathcal{L}_D)$

- $i_0 = i_{0,1}, ..., i_{0,n}$ and $i_D = i_{D,1}, ..., i_{D,n}$ with $i_D = Dup(i_0)$.
- QED test: concatenation $i = i_0 :: i_D$ of 2n instructions.
- Correct execution of *i* preserves QED-consistency.

Using BMC in SQED

Select partition \mathcal{L}_0 , \mathcal{L}_D of \mathcal{L} and mapping $L_D: \mathcal{L}_0 \to \mathcal{L}_D$

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$ n = 1Select *n* original instructions \mathbf{i}_{O}

Using BMC in SQED

Using BMC in SQED Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$ n = 1Select *n* original instructions i_{0} Get *n* duplicate instructions $\mathbf{i}_D = Dup(\mathbf{i}_D)$ using L_D QED test $\mathbf{i} = \mathbf{i}_O :: \mathbf{i}_D$ Model: execute i (length 2n) in QED-consistent initial state s_0

Using BMC in SQED no Select partition \mathcal{L}_0 , \mathcal{L}_D of \mathcal{L} Counterand mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$ example *i* n = 1practice yes Select *n* original Continue using instructions i_{0} $\mathcal{L}_{O}, \mathcal{L}_{D}, \mathcal{L}_{D}?$ n = n + 1no Get *n* duplicate instructions yes $\mathbf{i}_{D} = Dup(\mathbf{i}_{O})$ using L_{D} QED test $\mathbf{i} = \mathbf{i}_O :: \mathbf{i}_D$ Model: execute i (length 2n) in s_{2n} QED-consistent? QED-consistent initial state s_0 final state s_{2n}

$$\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}. \\ (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land \\ (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))$$

• Transition T(s, i) = s'

$$\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}. \\ (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land \\ (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))$$

• Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:

$$\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}. \\ (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land \\ (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))$$

Transition T(s, i) = s' according to Spec ⊆ S x I x S iff:
1. all non-output locations unchanged, and

$$\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}. \\ (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land \\ (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))$$

- Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:
 - 1. all non-output locations unchanged, and
 - 2. correct output produced for given input values.
 - Output specification: SpecOut: $I \times \mathcal{V}^2 \to \mathcal{V}$.

$$\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}. \\ (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land \\ (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))$$

- Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:
 - 1. all non-output locations unchanged, and
 - 2. correct output produced for given input values.
 - Output specification: $SpecOut: I \times \mathcal{V}^2 \to \mathcal{V}$.
- Abstract spec needed only for theory, not practice.

Bugs and Processor Correctness

Processor P is correct wrt. Spec:

- $\forall s \in S, i \in I. reach(s) \rightarrow Spec(s, i, T(s, i)).$
- All instructions execute correctly in all reachable states.

Bug:

- Instruction i_b and set $S_b \subseteq S$ of bug-triggering states.
- $S_b = \{s \in S \mid reach(s) \land \sim Spec(s, i_b, T(s, i_b))\}$

Bugs and Processor Correctness

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states *Init*.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states *Init*.

Single-instruction (SI) bug:

- $\exists s \in Init, i \in I. \sim Spec(s, i, T(s, i)).$
- No setup sequence, well-studied approaches to checking.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states *Init*.

Single-instruction (SI) bug:

- $\exists s \in Init, i \in I. \sim Spec(s, i, T(s, i)).$
- No setup sequence, well-studied approaches to checking.

Soundness of SQED

QED test $i = i_0 :: i_D$ fails iff

- QED-consistent initial state $s_0 \in Init$,
- QED-inconsistent final state $s = T(s_0, i)$.

Soundness of SQED

QED test $i = i_0 :: i_D$ fails iff

- QED-consistent initial state $s_0 \in Init$,
- QED-inconsistent final state $s = T(s_0, i)$.

Theorem: *if there exists a failing QED test for P, then P has a bug wrt. to some abstract Spec.*

 $QEDcons(s_0)$

Initial state

- Flexibility in choosing *L*_D.
- QED-consistent initial state s_0 .

 $QEDcons(s_0)$

Initial state

QED test $\mathbf{i} = (\mathbf{i}_{0,1}, \dots, \mathbf{i}_{0,n}) :: (\mathbf{i}_{D,1}, \dots, \mathbf{i}_{D,n})$ for some L_D .

- QED-consistent initial state s_0 .
- Let $i_b = Dup(i_{0,1})$: $i_{0,1}$ meets Spec due to SI-correctness.

 $QEDcons(s_0)$

QED test $i = (i_{0,1}, ..., i_{0,n}) :: (i_{D,1}, ..., i_{D,n})$ for some L_D .

• Setup sequence $i_{0,1}, \dots, i_{0,n}$ to reach triggering state $s_n \in S_b$.

- Setup sequence $i_{0,1}, \dots, i_{0,n}$ to reach triggering state $s_n \in S_b$.
- Bug instruction $i_b = Dup(i_{0,1})$ fails in s_n .

- E.g. wrong value at output location l of i_b in s_{n+1} .
- Correct value at original output location l' of $i_{0,1}$ in s_1 .

- Mismatching values at locations l and l' in s_{2n} .
- Final state s_{2n} QED-inconsistent.

Conditional Completeness

Theorem: *if a bug-specific QED test i exists, then i fails.*

Extensions: Reset Instructions

Extensions: Reset Instructions

- Bug set up and triggered by $i_1, \dots, i_k = i_b$.
- No duplication: check states after $i_k = i_b$ with(out) reset.

- Bug set up and triggered by $i_1, \dots, i_k = i_b$.
- Execute $i_1, \dots, i_k = i_b$ from $s_I \in Init$: wrong value in state s.

- Execute hard reset in state s, get back to s_I .
- Idea: execute $i_1, ..., i_k = i_b$ again with soft reset before i_b .

- Execute soft reset in bug-triggering state before $i_k = i_b$.
- Make use of SI correctness.

- Bug instruction $i_k = i_b$ executes correctly.
- Compare *s* and final state *s*'.

• QED test with reset fails iff $s(l) \neq s'(l)$ for a location l.

Theorem (full completeness): *if P is SI correct and has no failing QED test with reset, then P is correct.*

Summary: SQED Soundness and Completeness

- If M not self-consistent then $B \in M$.
- Self-consistency covers bug B.

No spurious cex

Summary: SQED Soundness and Completeness

• If $B \in M$ then M not self-consistent.

• Self-consistency covers bug B.

Conditional/full Completeness

Future Work

Leveraging QED test extensions:

- Soft/hard reset not yet applied in practice.
- Design-for-verification approach.

Formal model refinements:

- Instruction pipelines, multiprocessor systems.
- Deadlock detection.
- Symbolic starting states.

Thank you for watching this video!