
A Theoretical Framework for Symbolic 
Quick Error Detection

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020

Preprint: https://arxiv.org/abs/2006.05449

F L O R I AN L O N SI N G

S U BH ASI SH M I TR A

C L AR K B AR R ETT

https://arxiv.org/abs/2006.05449


Context: Pre-Silicon Verification

Post-silicon

Validation
Fabrication

Electronic Design Automation (EDA)

• Our focus: processor designs.

• Formally verify model of a design (e.g. Verilog).

• Model checking vs. non-formal simulation or testing.

Design

(HDL)

2

Pre-silicon

Verification



Context: Pre-Silicon Verification

Post-silicon

Validation
Fabrication

Electronic Design Automation (EDA)

• Our focus: processor designs.

• Formally verify model of a design (e.g. Verilog).

• Model checking vs. non-formal simulation or testing.

Design

(HDL)

3

Pre-silicon

Verification



Soundness of Bug-Finding

4

Model 

Checker

Does P ∈ Spec
hold in M?

Properties:

P0, P1,…

Formal

Specification Spec

Bugs:
B0, B1,..

M

• If P ∈ Spec fails then B ∈ M.

• Property P covers bug B.

Soundness ≈
no spurious cex



Completeness of Bug-Finding

5

Model 

Checker

• If B ∈ M then P ∈ Spec fails.

• Property P covers bug B.

Completeness ≈
Spec covers all bugs

Does P ∈ Spec
hold in M?

Properties:

P0, P1,…

Formal

Specification Spec

Bugs:
B0, B1,..

M



Completeness of Bug-Finding

6

Model 

Checker

Does P ∈ Spec
hold in M?

• “Have I written enough properties?” [Katz et al. CHARME’99].

• Challenge: making Spec complete.

…

Properties:

P0, P1,…

Formal

Specification Spec

Bugs:
B0, B1,..

M



Challenge: Completeness of Bug-Finding

7

Model 

Checker

Does P ∈ Spec
hold in M?

• Spec: manual writing of implementation-specific properties.

…

Properties:

P0, P1,…

Formal

Specification Spec

Bugs:
B0, B1,..

M



Challenge: Completeness of Bug-Finding

8

Model 

Checker

Does P ∈ Spec’
hold in M?

• Spec: manual writing of implementation-specific properties.

• Model/design changes → Spec to be adapted (manually).

…

Bugs:
B0’, B1’,..

M’

Properties:

P0’, P1’,…

Formal

Specification Spec’



Challenge: Completeness of Bug-Finding

9

Model 

CheckerBugs:
B0’, B1’,..

• Spec: manual writing of implementation-specific properties.

• Model/design changes → Spec to be adapted (manually).

• Completeness depending on Spec.

…

Bugs:
B0’, B1’,..

M’

Properties:

P0’, P1’,…

Formal

Specification Spec’

Does P ∈ Spec’
hold in M?



Symbolic Quick Error Detection (SQED)

10

Model 

Checker
Self-

consistency

Formal

Specification Spec

• No need for Spec or implementation-specific properties.

• Leverages bounded model checking (BMC).

…

Bugs:
B0, B1,..

M



Symbolic Quick Error Detection (SQED)

11

Model 

Checker

Is M self-

consistent?

• No need for Spec or implementation-specific properties.

• Leverages bounded model checking (BMC).

• Self-consistency: universal property, no manual writing.

…

Bugs:
B0’, B1’,..

Bugs:
B0’, B1’,..

Bugs:
B0’, B1’,..

M’

Self-

consistency

Formal

Specification Spec



SQED: Industrial Strength

Industry Flow SQED

Bug detection
0% +7%100%

All known bugs + more

INFINEON case study: automotive IP versions [Singh et al DATE’19]

Traditional verification:

(Constrained) random simulation, directed tests, formal.
12



Our Contributions: Formal Proofs

13

Bounded 

Model Checker 
Self-

consistencyBugs:
B0, B1,..

1. Soundness: no spurious cex.

2. (Conditional) completeness: all bugs covered (BMC depth).

3. Formal framework: abstract processor model.

Symbolic quick error detection

“Property fails” ≈
M not self-consistent

Bugs:
B0, B1,..

M



Self-Consistency

14

• Function 𝑓: equivalent inputs → equivalent outputs.

• Functional congruence property:

∀𝑥, 𝑥′ ∶ 𝑥 = 𝑥′ → 𝑓 𝑥 = 𝑓(𝑥′)



outputs (regs/mem)

outputs’ (regs/mem)

𝑖1, 𝑖2, … , 𝑖𝑛 + 

inputs (regs/mem)

𝑖1′, 𝑖2′, … , 𝑖𝑛′ + 

inputs’ (regs/mem)

Self-Consistency

15

• Processor Design M:

M



outputs (regs/mem)

outputs’ (regs/mem)

𝑖1, 𝑖2, … , 𝑖𝑛 + 

inputs (regs/mem)

𝑖1′, 𝑖2′, … , 𝑖𝑛′ + 

inputs’ (regs/mem)

Self-Consistency

16

• Processor Design M:

M

HW designs have complex internal state (pipeline,…).



𝓛

Formal Model of Processors and SQED

17

𝑠0

• State 𝑠0: mapping from locations 𝓛 to values.

• (Non-)architectural parts of 𝑠0 = (sa, sna). 

• 𝓛: regs. and mem. locations, value 𝑠0 𝑙 = sa(𝑙) = 𝑣. 



𝓛𝓛

Formal Model of Processors and SQED

18

𝑠0

• Instruction 𝑖 = 𝑜𝑝, 𝑙, 𝑙′, 𝑙′′ , one-step execution.

• Opcode 𝑜𝑝, input locations (𝑙′, 𝑙′′), output location 𝑙.
• Transition: T(𝑠0, 𝑖) = s1, 𝑠0 = (sa, sna), 𝑠1 = (sa′, sna′).

𝑠1

𝑖



Formal Model of Processors and SQED

19

𝑠0

𝓛𝑶

𝓛𝑫

• Partition of 𝓛: original and duplicate locations 𝓛𝑶, 𝓛𝑫.

• Arbitrary, fixed bijective mapping LD ∶ 𝓛𝑶 → 𝓛𝑫.

• Self-consistency property based on mapping LD.

Example: register identifiers
𝓛 = {0,1, … , 31}

𝓛𝑶 = {0, … , 15}
𝓛𝑫 = {16, … , 31}

LD 𝑙 = 𝑙 + 16



Formal Model of Processors and SQED

20

𝑠0

𝓛𝑶

𝓛𝑫

• Original instruction 𝑖𝑂 = (𝑜𝑝, 𝑙, (𝑙′, 𝑙′′)).

• Duplicate 𝑖𝐷 = 𝐷𝑢𝑝 𝑖𝑂 = (𝑜𝑝, LD(𝑙), LD(𝑙′, 𝑙′′)).

Example:
𝑖𝑂 = (ADD, 𝑙12, (𝑙4, 𝑙8))

LD 𝑙 = 𝑙 + 16
𝑖𝐷 = (ADD, 𝑙28, (𝑙20, 𝑙24))



Formal Model of Processors and SQED

21

• Original instruction 𝑖𝑂 = (𝑜𝑝, 𝑙, (𝑙′, 𝑙′′)).

• Duplicate 𝑖𝐷 = 𝐷𝑢𝑝 𝑖𝑂 = (𝑜𝑝, LD(𝑙), LD(𝑙′, 𝑙′′)).
• Original/duplicate 𝑖𝑂/ 𝑖𝐷 operates on 𝓛𝑶/𝓛𝑫 only.

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂 𝑖𝐷 = 𝐷𝑢𝑝(𝑖𝑂)

𝑠0 𝑠1 𝑠2



Formal Model of Processors and SQED

22

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂 𝑖𝐷 = 𝐷𝑢𝑝(𝑖𝑂)

𝑠0 𝑠1 𝑠2

• Given LD, state 𝑠0 QED-consistent ↔ 𝑠0 ℒ𝑂 = 𝑠0 ℒ𝐷

• Matching values at original/duplicate locations.



Formal Model of Processors and SQED

23

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂 𝑖𝐷 = 𝐷𝑢𝑝(𝑖𝑂)

𝑠0 𝑠1 𝑠2

• Given LD, state 𝑠0 QED-consistent ↔ 𝑠0 ℒ𝑂 = 𝑠0 ℒ𝐷

• Matching values at original/duplicate locations.
• Correct execution of 𝑖𝑂/ 𝑖𝐷 preserves QED-consistency.

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠2)𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝑠0 ℒ𝑂 = 𝑠0 ℒ𝐷 𝑠2 ℒ𝑂 = 𝑠2 ℒ𝐷𝑠0 ℒ𝐷 = 𝑠1 ℒ𝐷



Formal Model of Processors and SQED

24

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂,1 𝑖𝐷,𝑛 = 𝐷𝑢𝑝(𝑖𝑂,𝑛)

𝑠0 𝑠2𝑛

• 𝒊𝑂 = 𝑖𝑂,1, … , 𝑖𝑂,𝑛 and 𝒊𝐷 = 𝑖𝐷,1, … , 𝑖𝐷,𝑛 with 𝒊𝐷 = 𝐷𝑢𝑝 𝒊𝑂 .

• QED test: concatenation 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷 of 2𝑛 instructions.

• Correct execution of 𝒊 preserves QED-consistency.

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠2𝑛)𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝑠0 ℒ𝑂 = 𝑠0 ℒ𝐷 𝑠2𝑛 ℒ𝑂 = 𝑠2𝑛 ℒ𝐷

…



25

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Using BMC in SQED



26

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

𝑛 = 1

Using BMC in SQED



27

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑛 = 1

Using BMC in SQED



28

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Using BMC in SQED



29

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?
𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED



30

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

no

Counter-

example 𝒊

𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED



31

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED



32

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

no

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED



33

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

yes

𝑛 = 𝑛 + 1

no

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED



34

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original 

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

yes

𝑛 = 𝑛 + 1

no

Model: execute 𝒊 (length 2𝑛) in 

QED-consistent initial state 𝑠0

Using BMC in SQED

practice



Abstract Specification Relation

35

• Transition T(s, 𝑖) = s′

∀𝑠, 𝑠′∊ 𝑆, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑠′ ↔ ∀ 𝑙 ∊ ℒ.

𝑙 ≠ 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠 𝑙 = 𝑠′ 𝑙 ⋀

𝑙 = 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠′ 𝑙 = 𝑆𝑝𝑒𝑐𝑂𝑢𝑡(𝑖, 𝑠(𝐿𝑜𝑐𝐼𝑛(𝑖)))



Abstract Specification Relation

36

• Transition T(s, 𝑖) = s′ according to 𝑆𝑝𝑒𝑐 ⊆ 𝑆 𝗑 𝐼 𝗑 𝑆 iff: 

∀𝑠, 𝑠′∊ 𝑆, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑠′ ↔ ∀ 𝑙 ∊ ℒ.

𝑙 ≠ 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠 𝑙 = 𝑠′ 𝑙 ⋀

𝑙 = 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠′ 𝑙 = 𝑆𝑝𝑒𝑐𝑂𝑢𝑡(𝑖, 𝑠(𝐿𝑜𝑐𝐼𝑛(𝑖)))



Abstract Specification Relation

37

• Transition T(s, 𝑖) = s′ according to 𝑆𝑝𝑒𝑐 ⊆ 𝑆 𝗑 𝐼 𝗑 𝑆 iff: 

1. all non-output locations unchanged, and

∀𝑠, 𝑠′∊ 𝑆, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑠′ ↔ ∀ 𝑙 ∊ ℒ.

𝑙 ≠ 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠 𝑙 = 𝑠′ 𝑙 ⋀

𝑙 = 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠′ 𝑙 = 𝑆𝑝𝑒𝑐𝑂𝑢𝑡(𝑖, 𝑠(𝐿𝑜𝑐𝐼𝑛(𝑖)))



Abstract Specification Relation

38

• Transition T(s, 𝑖) = s′ according to 𝑆𝑝𝑒𝑐 ⊆ 𝑆 𝗑 𝐼 𝗑 𝑆 iff: 

1. all non-output locations unchanged, and

2. correct output produced for given input values.

• Output specification: 𝑆𝑝𝑒𝑐𝑂𝑢𝑡: 𝐼 𝗑 𝒱2 → 𝒱.

∀𝑠, 𝑠′∊ 𝑆, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑠′ ↔ ∀ 𝑙 ∊ ℒ.

𝑙 ≠ 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠 𝑙 = 𝑠′ 𝑙 ⋀

𝑙 = 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠′ 𝑙 = 𝑆𝑝𝑒𝑐𝑂𝑢𝑡(𝑖, 𝑠(𝐿𝑜𝑐𝐼𝑛(𝑖)))



Abstract Specification Relation

39

• Transition T(s, 𝑖) = s′ according to 𝑆𝑝𝑒𝑐 ⊆ 𝑆 𝗑 𝐼 𝗑 𝑆 iff: 

1. all non-output locations unchanged, and

2. correct output produced for given input values.

• Output specification: 𝑆𝑝𝑒𝑐𝑂𝑢𝑡: 𝐼 𝗑 𝒱2 → 𝒱.
• Abstract spec needed only for theory, not practice.

∀𝑠, 𝑠′∊ 𝑆, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑠′ ↔ ∀ 𝑙 ∊ ℒ.

𝑙 ≠ 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠 𝑙 = 𝑠′ 𝑙 ⋀

𝑙 = 𝐿𝑜𝑐𝑂𝑢𝑡 𝑖 → 𝑠′ 𝑙 = 𝑆𝑝𝑒𝑐𝑂𝑢𝑡(𝑖, 𝑠(𝐿𝑜𝑐𝐼𝑛(𝑖)))



Bugs and Processor Correctness

40

Bug:
• Instruction 𝑖𝑏 and set 𝑆𝑏 ⊆ 𝑆 of bug-triggering states.

• 𝑆𝑏 = 𝑠 ∊ 𝑆 𝑟𝑒𝑎𝑐ℎ 𝑠 ⋀ ~𝑆𝑝𝑒𝑐 𝑠, 𝑖𝑏, 𝑇(𝑠, 𝑖𝑏) }

Processor P is correct wrt. Spec:

• ∀𝑠 ∊ 𝑆, 𝑖 ∊ 𝐼. 𝑟𝑒𝑎𝑐ℎ(𝑠) → 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• All instructions execute correctly in all reachable states.



Bugs and Processor Correctness

41

Initial

states
…

Reachable states

All

states

States 𝑆𝑏

𝑖𝑏

𝑠 ∊ 𝑆𝑏

Bug setup sequence

𝑖1 𝑖2 𝑖𝑛



Single-Instruction Bugs and Correctness

42

Processor P is single-instruction (SI) correct wrt. Spec:

• ∀𝑠 ∊ 𝐼𝑛𝑖𝑡, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• All instructions execute correctly in all initial states 𝐼𝑛𝑖𝑡.



Single-Instruction Bugs and Correctness

43

Single-instruction (SI) bug:

• ∃𝑠 ∊ 𝐼𝑛𝑖𝑡, 𝑖 ∊ 𝐼. ~𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• No setup sequence, well-studied approaches to checking.

Processor P is single-instruction (SI) correct wrt. Spec:

• ∀𝑠 ∊ 𝐼𝑛𝑖𝑡, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• All instructions execute correctly in all initial states 𝐼𝑛𝑖𝑡.



Single-Instruction Bugs and Correctness

44

Single-instruction (SI) bug:

• ∃𝑠 ∊ 𝐼𝑛𝑖𝑡, 𝑖 ∊ 𝐼. ~𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• No setup sequence, well-studied approaches to checking.

Processor P is single-instruction (SI) correct wrt. Spec:

• ∀𝑠 ∊ 𝐼𝑛𝑖𝑡, 𝑖 ∊ 𝐼. 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• All instructions execute correctly in all initial states 𝐼𝑛𝑖𝑡.

Assumption: P is SI-correct.



Soundness of SQED

45

QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷 fails iff

• QED-consistent initial state 𝑠0 ∊ 𝐼𝑛𝑖𝑡,
• QED-inconsistent final state s = 𝑇 𝑠0, 𝒊 .



Soundness of SQED

46

QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷 fails iff

• QED-consistent initial state 𝑠0 ∊ 𝐼𝑛𝑖𝑡,
• QED-inconsistent final state s = 𝑇 𝑠0, 𝒊 .

Theorem: if there exists a failing QED test for P, then P 

has a bug wrt. to some abstract 𝑆𝑝𝑒𝑐.



Towards Completeness: Bug-Specific QED Test

47

𝓛𝑶

𝓛𝑫 𝑠0

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

Initial state

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷.

• Flexibility in choosing 𝐿𝐷.

• QED-consistent initial state 𝑠0



Towards Completeness: Bug-Specific QED Test

48

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

Initial state

𝑖𝑂,1

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷. 

• QED-consistent initial state 𝑠0

• Let 𝑖𝑏 = 𝐷𝑢𝑝(𝑖𝑂,1): 𝑖𝑂,1 meets Spec due to SI-correctness.



Towards Completeness: Bug-Specific QED Test

49

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝓛𝑶

𝓛𝑫 𝑠𝑛

…

Trigger state

𝑖𝑂,1

Setup sequence

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷. 

• Setup sequence 𝑖𝑂,1, … , 𝑖𝑂,𝑛 to reach triggering state 𝑠𝑛 ∊ 𝑆𝑏

Initial state



Towards Completeness: Bug-Specific QED Test

50

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝓛𝑶

𝓛𝑫 𝑠𝑛

…

Trigger state

𝑖𝑂,1

Setup sequence

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷. 

• Setup sequence 𝑖𝑂,1, … , 𝑖𝑂,𝑛 to reach triggering state 𝑠𝑛 ∊ 𝑆𝑏

• Bug instruction 𝑖𝑏 = 𝐷𝑢𝑝(𝑖𝑂,1) fails in 𝑠𝑛

Initial state

𝑖𝑏

𝑖𝐷,1
𝓛𝑶

𝓛𝑫 𝑠𝑛+1



Towards Completeness: Bug-Specific QED Test

51

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝓛𝑶

𝓛𝑫 𝑠𝑛

…

Trigger state

𝑖𝑂,1

Setup sequence

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷.

• E.g. wrong value at output location 𝑙 of 𝑖𝑏 in 𝑠𝑛+1. 

• Correct value at original output location 𝑙′ of 𝑖𝑂,1 in 𝑠1.

Initial state

𝓛𝑶

𝓛𝑫 𝑠𝑛+1

𝑖𝑏

𝑖𝐷,1

𝑙

𝑙′



Towards Completeness: Bug-Specific QED Test

52

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝓛𝑶

𝓛𝑫 𝑠𝑛

…

Trigger state

𝑖𝑂,1

Setup sequence

QED test 𝒊 = (𝑖𝑂,1, … , 𝑖𝑂,𝑛) ∷ (𝑖𝐷,1, … , 𝑖𝐷,𝑛) for some 𝐿𝐷.

• Mismatching values at locations 𝑙 and 𝑙′ in 𝑠2𝑛

• Final state 𝑠2𝑛 QED-inconsistent.

Initial state

𝓛𝑶

𝓛𝑫 𝑠𝑛+1

𝓛𝑶

𝓛𝑫 𝑠2𝑛

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠2)

…

𝑖𝑏

𝑖𝐷,1 𝑖𝐷,𝑛𝑖𝐷,2

𝑙

𝑙′

𝑙

𝑙′



Conditional Completeness

53

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫𝑠0 𝑠1

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝓛𝑶

𝓛𝑫 𝑠𝑛

…

Trigger state

𝑖𝑂,1

Setup sequence
Initial state

𝓛𝑶

𝓛𝑫 𝑠𝑛+1

𝓛𝑶

𝓛𝑫 𝑠2𝑛

𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠2)

…

𝑖𝑏

𝑖𝐷,1 𝑖𝐷,𝑛𝑖𝐷,2

𝑙

𝑙′

𝑙

𝑙′

Theorem: if a bug-specific QED test 𝒊 exists, then 𝒊 fails.



Extensions: Reset Instructions

54

…

Reachable states

𝑖1 𝑖2
𝑖𝑛

𝑖𝑟

Soft-reset instruction 𝑖𝑟

• 𝑠 = (𝑠𝑎, 𝑠𝑛𝑎), 𝑠′ = (𝑠𝑎′, 𝑠𝑛𝑎′).
• Keep arch. part: 𝑠𝑎 = 𝑠𝑎′.

𝑠

𝑠′

Initial 

states



Extensions: Reset Instructions

55

…

Reachable states

𝑖1 𝑖2
𝑖𝑛

𝑖𝑟(𝑠′)

Hard-reset instruction 𝑖𝑟(𝑠′)
• 𝑠 = (𝑠𝑎, 𝑠𝑛𝑎), 𝑠′ = (𝑠𝑎′, 𝑠𝑛𝑎′).

• Change 𝑠𝑎 and 𝑠𝑛𝑎 arbitrarily.

𝑠

𝑠′

Initial 

states



Extensions: QED Test with Reset 

56

…
𝑖1 𝑖𝑘 = 𝑖𝑏𝑠𝐼

𝑠

Setup sequence

• Bug set up and triggered by 𝑖1, … , 𝑖𝑘 = 𝑖𝑏.
• No duplication: check states after 𝑖𝑘 = 𝑖𝑏 with(out) reset.



Extensions: QED Test with Reset 

57

…
𝑖1 𝑖𝑘 = 𝑖𝑏𝑠𝐼

𝑠

Setup sequence

• Bug set up and triggered by 𝑖1, … , 𝑖𝑘 = 𝑖𝑏.
• Execute 𝑖1, … , 𝑖𝑘 = 𝑖𝑏 from 𝑠𝐼 ∊ 𝐼𝑛𝑖𝑡: wrong value in state 𝑠



Extensions: QED Test with Reset 

58

…
𝑖1 𝑖𝑘 = 𝑖𝑏 𝑖𝑟(𝑠𝐼)𝑠𝐼

𝑠

Setup sequence

Hard reset

𝑠𝐼
…

• Execute hard reset in state 𝑠, get back to 𝑠𝐼

• Idea: execute 𝑖1, … , 𝑖𝑘 = 𝑖𝑏 again with soft reset before 𝑖𝑏.



Extensions: QED Test with Reset 

59

…
𝑖1 𝑖𝑘 = 𝑖𝑏 𝑖𝑟(𝑠𝐼)𝑠𝐼

𝑠

Setup sequence

Hard reset

…
𝑖1 𝑖𝑟𝑠𝐼

Soft reset

𝑠𝐼
…

…

• Execute soft reset in bug-triggering state before 𝑖𝑘 = 𝑖𝑏

• Make use of SI correctness.

Init state



Extensions: QED Test with Reset 

60

…
𝑖1 𝑖𝑘 = 𝑖𝑏 𝑖𝑟(𝑠𝐼)𝑠𝐼

𝑠

Setup sequence

Hard reset

…
𝑖1 𝑖𝑘 = 𝑖𝑏𝑖𝑟𝑠𝐼

𝑠′Soft reset

𝑠𝐼
…

…

• Bug instruction 𝑖𝑘 = 𝑖𝑏 executes correctly.
• Compare 𝑠 and final state 𝑠′. 

Init state



Extensions: QED Test with Reset 

61

…
𝑖1 𝑖𝑘 = 𝑖𝑏 𝑖𝑟(𝑠𝐼)𝑠𝐼

𝑠

Setup sequence

Hard reset

…
𝑖1 𝑖𝑘 = 𝑖𝑏𝑖𝑟𝑠𝐼

𝑠′Soft reset

𝑠𝐼
…

…

• QED test with reset fails iff 𝑠 𝑙 ≠ 𝑠′ 𝑙 for a location 𝑙. 

Init state



Extensions: QED Test with Reset 

62

…
𝑖1 𝑖𝑘 = 𝑖𝑏 𝑖𝑟(𝑠𝐼)𝑠𝐼

𝑠

Setup sequence

Hard reset

…
𝑖1 𝑖𝑘 = 𝑖𝑏𝑖𝑟𝑠𝐼

𝑠′Soft reset

𝑠𝐼
…

…

Theorem (full completeness): if P is SI correct and has 

no failing QED test with reset, then P is correct.

Init state



Summary: SQED Soundness and Completeness

63

Bounded 

Model Checker 

Self-

consistencyBugs:
B0, B1,..

SQED

Bugs:
B0, B1,..

M

• If M not self-consistent then B ∈ M.

• Self-consistency covers bug B.
No spurious cex



Summary: SQED Soundness and Completeness

64

Bounded 

Model Checker 

Self-

consistencyBugs:
B0, B1,..

SQED

Bugs:
B0, B1,..

M

• If B ∈ M then M not self-consistent.

• Self-consistency covers bug B.

Conditional/full

Completeness



Future Work

65

Leveraging QED test extensions:

• Soft/hard reset not yet applied in practice.

• Design-for-verification approach.

Formal model refinements:

• Instruction pipelines, multiprocessor systems.

• Deadlock detection.

• Symbolic starting states.



66

Thank you for watching this video!


