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Context: Pre-Silicon Verification

Electronic Design Automation (EDA)

| Pre-silicon | Y Post-silicon
Ny Fabrication ] :
I Verification | doricatio Validation

« Our focus: processor designs.
« Formally verify model of a design (e.g. Verilog).
* Model checking vs. non-formal simulation or testing.
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Symbolic Quick Error Detection (SQED)

Bounded

Self-
— Model Checker —

l Cf. traditional MC:
Is M self-consistent? Property set (spec)

consistency

« No formal spec or implementation-specific properties.
« Self-consistency: universal property.
* Industrial-strength technique.
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Our Contributions: SQED Soundness Proof
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Our Contributions: SQED Completeness Proof
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 |If B € Mthen M not self-consistent.




Self-Consistency

* Processor Design M:
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A HW designs have complex internal state (pipeline,...).



Formal Model of Processors and SQED

« State sy: mapping from locations £ to values.
« L:register and memory locations.



Formal Model of Processors and SQED

« Executing instruction i: read from input locations in s,.
« Update output location in s; by opcode.
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Formal Model of Processors and SQED

« Original locations £,.
« Duplicate locations £Lj,.
 Arbitrary, fixed bijective mapping L, : Lo = Lp.
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Formal Model of Processors and SQED

Lo io Lo | ip = Dup(ip)
—

So S1

« QOriginal instruction i,: read/write £, only.
« Duplicate i: same opcode, read/write L only.

12



Formal Model of Processors and SQED

Lo iO,l iD,n — Dup(iO,n) Lo

¢ iO = i0,1, ey iO,Tl’ iD = iD,ll ey iD,Tl! iD = Dup(io)
 QED test: concatenation i = i, :: ip of 2n Instructions.
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Formal Model of Processors and SQED

QEDcons(sy) QEDcons(s,,)?
Lo iO,l iD,n — Dup(iO,n) Lo
‘o S0 ‘o S2n
so(Lo) = so(Lp) Son(Lo) = $2n(Lp)?

¢ iO = iO,l! ey iO,Tl’ iD = iD,l’ ey iD,Tl! iD = Dup(io)
 QED test: concatenation i = i, :: ip of 2n Instructions.
 QED-consistent state: matching values at £, and £p.
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l Using BMC in SQED

Select partition £, L, of £
and mapping Lp: Ly, — Lp
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1 QED testi = iO . iD

Model: execute i (length 2n) in
QED-consistent initial state s,
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1 Using BMC in SQED
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1 Using BMC in SQED
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1 Using BMC in SQED
Select partition £, L of £ no Counter-
and mapping Lp: Ly, — Lp example i
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Processor Correctness

Processor P Is correct:
« VseS§,iel. reach(s) — Spec(s,i,T(s,1)).
 All instructions execute correctly in all reachable states.

Abstract specification Spec (theory only):
1. Correct output value product.
2. All non-output locations unchanged.

25



Reachable states

Trigger
states S,

Initial
states |
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Soundness of SQED

I QEDcons(sy) = QEDcons(s,,,)? '

Initial
states

QED testi = iy ::i
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-
Soundness of SQED

Theorem: if ~QEDcons(s,,,) then
processor P has a bug.

Initial
states

QED testi = iy ::i
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Conditional Completeness of SQED

Set up and trigger bug.
Sn€ Sp, iy = Dup(iy) = i,
 Freedom in choosing L.

Initial
states

Setup sequence i,

Bug-specific QED testi = iy :: i
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Conditional Completeness of SQED

i,/ = Dup(i,) =i, fails in s,,.
Goal: bug effect appears in s,,,.

Initial
states

Setup sequence i,

Bug-specific QED testi = iy :: i
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Conditional Completeness of SQED

Theorem: if bug-specific QED
test i exists then ~QEDcons(s,,,).

Initial
states

Setup sequence i,

Bug-specific QED testi = iy :: i
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Full Completeness of SQED

No duplication: run twice.
* Run reset instructions.
Assume: Spec in initial states.

i reset

Initial
states

Setup seguence

QED test i with reset
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Full Completeness of SQED

No duplication: run twice.
* Run reset instructions.
Assume: Spec in initial states.

Initial So tr G—

states

2" run

QED test i with reset
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-
Full Completeness of SQED

Theorem: if P has no failing QED
test with reset, then P Is correct.

Initial So
states

QED test i with reset
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Future Work

Leveraging QED test extensions:
« Soft/hard reset not yet applied in practice.
» Design-for-verification approach.

Formal model refinements:

* Instruction pipelines, multiprocessor systems.
« Deadlock detection.

« Symbolic starting states.
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Thank you for your attention!
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