
A Theoretical Framework for Symbolic
Quick Error Detection

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020

Preprint: https://arxiv.org/abs/2006.05449

F L O R I AN L O N SI N G

S U BH ASI SH M I TR A

C L AR K B AR R ETT

https://arxiv.org/abs/2006.05449

Context: Pre-Silicon Verification

Post-silicon

Validation
Fabrication

Electronic Design Automation (EDA)

• Our focus: processor designs.

• Formally verify model of a design (e.g. Verilog).

• Model checking vs. non-formal simulation or testing.

Design

(HDL)

2

Pre-silicon

Verification

Context: Pre-Silicon Verification

Post-silicon

Validation
Fabrication

Electronic Design Automation (EDA)

• Our focus: processor designs.

• Formally verify model of a design (e.g. Verilog).

• Model checking vs. non-formal simulation or testing.

Design

(HDL)

3

Pre-silicon

Verification

Symbolic Quick Error Detection (SQED)

4

Bounded

Model Checker
Self-

consistency

Bugs:
B0, B1,..

• No formal spec or implementation-specific properties.

• Self-consistency: universal property.

• Industrial-strength technique.

Cf. traditional MC:

Property set (spec)

Bugs:
B0, B1,..

M

Is M self-consistent?

Our Contributions: SQED Soundness Proof

5

• If M not self-consistent then B ∈ M. No spurious cex

Bounded

Model Checker
Self-

consistency

Bugs:
B0, B1,..

Bugs:
B0, B1,..

M

Is M self-consistent?

Our Contributions: SQED Completeness Proof

6

• If B ∈ M then M not self-consistent.
Conditional/full

Completeness

Bounded

Model Checker
Self-

consistency

Bugs:
B0, B1,..

Bugs:
B0, B1,..

M

Is M self-consistent?

outputs (regs/mem)

outputs’ (regs/mem)

𝑖1, 𝑖2, … , 𝑖𝑛 +

inputs (regs/mem)

𝑖1′, 𝑖2′, … , 𝑖𝑛′ +

inputs’ (regs/mem)

Self-Consistency

7

• Processor Design M:

M

outputs (regs/mem)

outputs’ (regs/mem)

𝑖1, 𝑖2, … , 𝑖𝑛 +

inputs (regs/mem)

𝑖1′, 𝑖2′, … , 𝑖𝑛′ +

inputs’ (regs/mem)

Self-Consistency

8

• Processor Design M:

M

HW designs have complex internal state (pipeline,…).

Formal Model of Processors and SQED

9

• State 𝑠0: mapping from locations 𝓛 to values.

• 𝓛: register and memory locations.

𝓛

𝑠0

Formal Model of Processors and SQED

10

• Executing instruction 𝑖 read from input locations in 𝑠0.

• Update output location in 𝑠1 by opcode.

𝑖
𝓛

𝑠0 𝑠1

𝓛

Formal Model of Processors and SQED

11

• Original locations 𝓛𝑶
• Duplicate locations 𝓛𝑫
• Arbitrary, fixed bijective mapping LD ∶ 𝓛𝑶 → 𝓛𝑫.

𝓛𝑶

𝓛𝑫 𝑠0

Formal Model of Processors and SQED

12

• Original instruction 𝑖𝑂: read/write 𝓛𝑶 only.

• Duplicate 𝑖𝐷 same opcode, read/write 𝓛𝑫 only

𝑖𝑂𝓛𝑶

𝓛𝑫 𝑠0

𝓛𝑶

𝓛𝑫 𝑠1

𝑖𝐷 = 𝐷𝑢𝑝(𝑖𝑂) 𝓛𝑶

𝓛𝑫 𝑠2

Formal Model of Processors and SQED

13

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂,1 𝑖𝐷,𝑛 = 𝐷𝑢𝑝(𝑖𝑂,𝑛)

𝑠0 𝑠2𝑛

• 𝒊𝑂 = 𝑖𝑂,1, … , 𝑖𝑂,𝑛, 𝒊𝐷 = 𝑖𝐷,1, … , 𝑖𝐷,𝑛, 𝒊𝐷 = 𝐷𝑢𝑝 𝒊𝑂 .

• QED test: concatenation 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷 of 2𝑛 instructions.

…

Formal Model of Processors and SQED

14

𝓛𝑶

𝓛𝑫

𝓛𝑶

𝓛𝑫

𝑖𝑂,1 𝑖𝐷,𝑛 = 𝐷𝑢𝑝(𝑖𝑂,𝑛)

𝑠0 𝑠2𝑛

• 𝒊𝑂 = 𝑖𝑂,1, … , 𝑖𝑂,𝑛, 𝒊𝐷 = 𝑖𝐷,1, … , 𝑖𝐷,𝑛, 𝒊𝐷 = 𝐷𝑢𝑝 𝒊𝑂 .

• QED test: concatenation 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷 of 2𝑛 instructions.

• QED-consistent state: matching values at 𝓛𝑶 and 𝓛𝑫.

𝑄𝐸𝐷𝑐𝑜𝑛𝑠 𝑠2𝑛 ?𝑄𝐸𝐷𝑐𝑜𝑛𝑠(𝑠0)

𝑠0 ℒ𝑂 = 𝑠0 ℒ𝐷 𝑠2𝑛 ℒ𝑂 = 𝑠2𝑛 ℒ𝐷

…

15

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Using BMC in SQED

16

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

𝑛 = 1

Using BMC in SQED

17

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑛 = 1

Using BMC in SQED

18

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Using BMC in SQED

19

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

final state 𝑠2𝑛

20

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

no

Counter-

example 𝒊

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

final state 𝑠2𝑛

21

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

final state 𝑠2𝑛

22

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

no

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

final state 𝑠2𝑛

23

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

yes

𝑛 = 𝑛 + 1

no

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

final state 𝑠2𝑛

24

Select partition ℒ𝑂, ℒ𝐷 of ℒ
and mapping 𝐿𝐷: ℒ𝑂 → ℒ𝐷

Select 𝑛 original

instructions 𝒊𝑂

Get 𝑛 duplicate instructions

𝒊𝐷 = 𝐷𝑢𝑝(𝒊𝑂) using 𝐿𝐷

𝑠2𝑛 QED-consistent?

yes

no

Counter-

example 𝒊

final state 𝑠2𝑛

𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Continue using

ℒ𝑂, ℒ𝐷, 𝐿𝐷?

𝑛 = 1

yes

𝑛 = 𝑛 + 1

no

Model: execute 𝒊 (length 2𝑛) in

QED-consistent initial state 𝑠0

Using BMC in SQED

practice

Processor Correctness

25

Processor P is correct:

• ∀𝑠 ∊ 𝑆, 𝑖 ∊ 𝐼. 𝑟𝑒𝑎𝑐ℎ(𝑠) → 𝑆𝑝𝑒𝑐 𝑠, 𝑖, 𝑇(𝑠, 𝑖) .

• All instructions execute correctly in all reachable states.

Abstract specification 𝑆𝑝𝑒𝑐 (theory only):

1. Correct output value product.

2. All non-output locations unchanged.

Bugs

26

Initial

states
…

Reachable states

All

states

Trigger

states 𝑆𝑏

𝑖𝑏

𝑠 ∊ 𝑆𝑏

Bug setup sequence

𝑖1 𝑖2 𝑖𝑛

𝑠′

Bug effect

Soundness of SQED

27

All

states𝑠2𝑛…
𝑖1 𝑖𝑛 𝑖1′ 𝑖𝑛′…Initial

states
𝑠0

𝑄𝐸𝐷𝑐𝑜𝑛𝑠 𝑠0 ⇒ 𝑄𝐸𝐷𝑐𝑜𝑛𝑠 𝑠2𝑛 ?

𝒊𝑂 𝒊𝐷

QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Soundness of SQED

28

All

states𝑠2𝑛…
𝑖1 𝑖𝑛 …Initial

states
𝑠0

Theorem: if ~𝑄𝐸𝐷𝑐𝑜𝑛𝑠 𝑠2𝑛 then

processor P has a bug.

𝒊𝑂 𝒊𝐷

𝑖1′ 𝑖𝑛′

QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Conditional Completeness of SQED

29

All

states𝑠2𝑛…
𝑖1 𝑖𝑛 …Initial

states
𝑠0

Setup sequence 𝒊𝑂 𝒊𝐷

𝑖1′ 𝑖𝑛′

𝑠𝑛

• Set up and trigger bug.
• 𝑠𝑛∊ 𝑆𝑏 𝑖1

′ = 𝐷𝑢𝑝 𝑖1 = 𝑖𝑏
• Freedom in choosing 𝐿𝐷.

Bug-specific QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Conditional Completeness of SQED

30

All

states𝑠2𝑛…
𝑖1 𝑖𝑛 …Initial

states
𝑠0

Setup sequence 𝒊𝑂 𝒊𝐷

𝑖1′ 𝑖𝑛′

𝑠𝑛

• 𝑖1
′ = 𝐷𝑢𝑝 𝑖1 = 𝑖𝑏 fails in 𝑠𝑛

• Goal: bug effect appears in 𝑠2𝑛.

Bug-specific QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Conditional Completeness of SQED

31

All

states𝑠2𝑛…
𝑖1 𝑖𝑛 …Initial

states
𝑠0

Setup sequence 𝒊𝑂 𝒊𝐷

𝑖1′ 𝑖𝑛′

𝑠𝑛

Theorem: if bug-specific QED

test 𝒊 exists then ~𝑄𝐸𝐷𝑐𝑜𝑛𝑠 𝑠2𝑛 .

Bug-specific QED test 𝒊 = 𝒊𝑂 ∷ 𝒊𝐷

Full Completeness of SQED

32

All

states
…

𝑖1 𝑖𝑏Initial

states
𝑠0

Setup sequence

• No duplication: run twice.

• Run reset instructions.

• Assume: 𝑆𝑝𝑒𝑐 in initial states.

QED test 𝒊 with reset

𝑠0
reset

1st run

Full Completeness of SQED

33

All

states

• No duplication: run twice.

• Run reset instructions.

• Assume: 𝑆𝑝𝑒𝑐 in initial states.

QED test 𝒊 with reset

Initial

states

…
𝑖1𝑠0

𝑠0′ 𝑖𝑏

2nd run

Full Completeness of SQED

34

All

states

QED test 𝒊 with reset

Initial

states

…
𝑖1𝑠0

𝑠0′ 𝑖𝑏

Theorem: if P has no failing QED

test with reset, then P is correct.

2nd run

Future Work

35

Leveraging QED test extensions:

• Soft/hard reset not yet applied in practice.

• Design-for-verification approach.

Formal model refinements:

• Instruction pipelines, multiprocessor systems.

• Deadlock detection.

• Symbolic starting states.

36

Thank you for your attention!

