A Theoretical Framework for Symbolic Quick Error Detection

FLORIAN LONSING SUBHASISH MITRA CLARK BARRETT

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020 Preprint: <u>https://arxiv.org/abs/2006.05449</u>

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

Symbolic Quick Error Detection (SQED)

- No formal spec or implementation-specific properties.
- Self-consistency: universal property.
- Industrial-strength technique.

Our Contributions: SQED Soundness Proof

• If M not self-consistent then $B \in M$.

No spurious cex

Our Contributions: SQED Completeness Proof

Is M self-consistent?

• If $B \in M$ then M not self-consistent.

Conditional/full Completeness

Self-Consistency

• Processor Design M:

Self-Consistency

• Processor Design M:

HW designs have complex internal state (pipeline,...).

- State s_0 : mapping from locations \mathcal{L} to values.
- *L*: register and memory locations.

- Executing instruction *i*: read from input locations in s_0 .
- Update output location in s_1 by opcode.

$$\begin{array}{c} \mathcal{L}_{O} \\ \mathcal{L}_{D} \\ S_{0} \end{array}$$

- Original locations \mathcal{L}_0 .
- Duplicate locations \mathcal{L}_D .
- Arbitrary, fixed bijective mapping $L_D : \mathcal{L}_O \to \mathcal{L}_D$.

- Original instruction i_0 : read/write \mathcal{L}_0 only.
- Duplicate i_D : same opcode, read/write \mathcal{L}_D only.

- $\mathbf{i}_{O} = i_{O,1}, \dots, i_{O,n}, \, \mathbf{i}_{D} = i_{D,1}, \dots, i_{D,n}, \, \mathbf{i}_{D} = Dup(\mathbf{i}_{O}).$
- QED test: concatenation $i = i_0 :: i_D$ of 2n instructions.

- $\mathbf{i}_{O} = i_{O,1}, \dots, i_{O,n}, \, \mathbf{i}_{D} = i_{D,1}, \dots, i_{D,n}, \, \mathbf{i}_{D} = Dup(\mathbf{i}_{O}).$
- QED test: concatenation $\mathbf{i} = \mathbf{i}_0 :: \mathbf{i}_D$ of 2n instructions.
- QED-consistent state: matching values at \mathcal{L}_0 and \mathcal{L}_D .

Using BMC in SQED

Select partition \mathcal{L}_O , \mathcal{L}_D of \mathcal{L} and mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$ n = 1Select *n* original instructions \mathbf{i}_{O}

Using BMC in SQED

Using BMC in SQED Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$ n = 1Select *n* original instructions i_{0} Get *n* duplicate instructions $\mathbf{i}_D = Dup(\mathbf{i}_D)$ using L_D QED test $\mathbf{i} = \mathbf{i}_O :: \mathbf{i}_D$ Model: execute i (length 2n) in QED-consistent initial state s_0

Using BMC in SQED no Select partition \mathcal{L}_0 , \mathcal{L}_D of \mathcal{L} Counterand mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$ example *i* n = 1practice yes Select *n* original Continue using instructions i_{0} $\mathcal{L}_{O}, \mathcal{L}_{D}, \mathcal{L}_{D}?$ n = n + 1no Get *n* duplicate instructions yes $\mathbf{i}_{D} = Dup(\mathbf{i}_{O})$ using L_{D} QED test $\mathbf{i} = \mathbf{i}_O :: \mathbf{i}_D$ Model: execute i (length 2n) in s_{2n} QED-consistent? QED-consistent initial state s_0 final state s_{2n}

Processor Correctness

Processor P is correct:

- $\forall s \in S, i \in I. reach(s) \rightarrow Spec(s, i, T(s, i)).$
- All instructions execute correctly in all reachable states.

Abstract specification *Spec* (theory only):

- 1. Correct output value product.
- 2. All non-output locations unchanged.

Conditional Completeness of SQED

• Freedom in choosing L_D .

Sn

 \boldsymbol{l}_D

S₀

Setup sequence i_0

 l_1

Bug-specific QED test $i = i_0 :: i_D$

All

states

 S_{2n}

Full Completeness of SQED

Full Completeness of SQED

l

*S*₀

• Run reset instructions.

resei

• Assume: *Spec* in initial states.

Initial

states

*S*₀

QED test i with reset

 l_h

All

states

2nd run

Future Work

Leveraging QED test extensions:

- Soft/hard reset not yet applied in practice.
- Design-for-verification approach.

Formal model refinements:

- Instruction pipelines, multiprocessor systems.
- Deadlock detection.
- Symbolic starting states.

Thank you for your attention!