Automated Benchmarking of Incremental
SAT and QBF Solvers

Uwe Egly Florian Lonsing Johannes Oetsch
Knowledge-Based Systems Group, Vienna University of Technology, Austria

20th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, 24 - 28 November 2015, Suva, Fiji

Austrian Rigorous Systems Engineering k b s n @

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 1/13

Introduction

Propositional Logic (SAT):

m Modelling NP-complete problems in formal verification, Al, ...

Quantified Boolean Formulas (QBF):
m Existential and universal quantification of propositional variables.
B Qix1,..., Qnxn. &, where Q; € {V,3} and ¢ a CNF.
m PSPACE-complete: potentially more succinct encodings than SAT.

Practice:

m Despite intractability, solvers often work well on structured problems.
m Applications to problems of higher complexity, e.g. NEXPTIME.
m SAT/QBF solvers are tightly integrated in application workflows.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 2/13

Abstract Non-Incremental Workflow

DONE

Encoding

Input

|

Solver

Application
i=0 RESULT, i :=i+1

m Application program: bounded model checker, synthesis tool,. ..

m Input problem solved in stepwise fashion.

m Step /: formula v; written to hard disk or imported by solver via API.
m Solver starts from scratch in each step /: potential redundant work.

m Sequence (¢, ..., 1,) of syntactically related formulas.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 3/13

Abstract Incremental Workflow

DONE

Encoding

Input

Solver

Application
i==0 RESULT, i:=i+1

m Step /i = 0 : solver receives initial formula v)g.

m Step i > 0 : solver receives and solves current 1; incrementally.

m ;= (Yi—1 \ ¥;) Ut obtained by adding ;" and deleting v; .

m Solver called incrementally: keep information learned in previous calls.

m Sequence (¢, . ..,%n) compactly represented by 1 and ¥;, ¥; .

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 4 /13

SAT /QBF Solving in Practice

DONE
Input /
Application
i:=0 RESULT, j:=i+1

{0y
i

S = (to,...,¢¥n) Solver

Benchmarking:

Encoding

Solver

Solver performance is crucial for practical applications.
Solver development relies on publicly available benchmarks.

|
|
m Benchmarks generated by application programs.
|

So far: focus on non-incremental solving.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 5/13

SAT /QBF Solving in Practice

DONE

Input

Application
i:=0 RESULT, j:=i+1

S:= <¢0,...

Problem:

Encoding

i i

Solver

Vi

How to identify ", ; ?

s Un) Solver

m Lack of benchmarks for incremental solvers.

Lack of application programs used to generate formula sequences.

|
m How to solve available formula sequence (¢, . ..
|

,¥n) incrementally?

So far: incremental solvers tightly coupled with application programs.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

5/13

Contributions

Vi
S:= <¢07 v 71/]I7> Application
L RESULT,
¥i i=i+1
+ - -
Syntactic Vi Y Generic o, 1n Benchmarking
: Update
Analysis) Program
Instructions

Automated Benchmarking:
m Translate sequence S of related formulas into incremental solver calls.
m Identify incremental formula updates: v; := (¢;_1 \ ¥;) Ui
m Compact representation of S by generic update instructions.
m Benchmarking program calls incremental solvers via standardized API.
m Tools used in the Incremental Library Track of the SAT Race 2015.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 6 /13

in Non-Incremental SAT Solving

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Progress
1200

o

1000 "

800 | o

*

CPU Time (in seconds)
T
COSS0006GO e

400 |-

200

d Oetsch (TU Wie

T T
Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Farklift (2003)
Siege (2003)
Zehaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)

Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009
Glucose (2009)
Clasp (2009)
Cryptominisat (2010) o
Lingeling (2010)
Minisat 2.2 (2010) il
Glucose 2 (2011) ful
Glueminisat (2011}
Contrasat (2011} ﬁ
Glucose 2.1 (2012)
Lingeling 587f (2012)
Glucase 3 (2013) o
Lingeling agw (2013) o

a

20 40 60 80 100 120 140 160 180
Number of problems sobved

Automated Benchmarking

200

Data and plot produced by Daniel Le Berre.

7/13

SAT /QBF Competitions

Competition Drives Innovation:
m Annual SAT-related events since 2002: SAT Competitions / Races.
m QBFEVALs (2004-2008, 2010, 2012), QBF Galleries (2013, 2014).

m Solver developers invent new technology: enables new applications.

Problem:
m So far, competitions have focused on non-incremental solving.

m No benchmarks (i.e. formula sequences) to test incremental solvers.

Our Approach:
m Conversion of available formula sequences into a standardized format.

m Comparison of incremental solvers on the standardized sequence.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 8 /13

Analyzing Formula Sequences

S:= <1/10,---,¢n>

Syntactic
Analysis

+
J

)

Incremental Updates in S := (¢, ...

7wn>:

Generic
Stack
Operations

m Cumulative clauses: appear in ; first and in all ¢; with i < j.

m Volatile clauses: appear in v); and are removed to obtain 1; with i < j.

Stack-Based Representation of v; := (¢;_1 \ ¢) U ¢j+=

m Deletion of volatile clauses ¢;” by pop € /.

m Temporary addition of volatile clauses @bjr by push € /;.

m Permanent addition of cumulative clauses wj’ by add € /;.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

9/13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ¢;: Volatile in 9;:
@bo = {Cl, 2, VC1} Co = {Cl, C2} VCO = {VCl}
¢1 = {Cl, C2, C3, VCy, VC2} Cl = {C3} VC1 = {VC1, VC2}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4} VC2 = {VC1,VC3}
Y3 = {c1, 2, c3,Ca,C5} C3 = {cs} VC3 =10

Stack operations: ()
Clauses on stack:

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 10 / 13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ;-
Yo = {c1, 2, ver } Co = {c1, 2}
¢1 = {C1,C2,C3,VC1,VC2} Cl = {C3}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4}

Y3 = {a, @, c,a,c} G = {cs}

Stack operations: Iy = add((p), push(VCo)
Clauses on stack: ¥o = {{c1, @}, {vc1}}

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking

Volatile in 1);:
VCO = {VCl}
\/C1 = {VC1, VC2}
VC2 = {VC1, VC3}
VCs =)

10 /13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ¢;: Volatile in 9;:
@bo = {Cl, 2, VC1} Co = {Cl, C2} VCO = {VCl}
¢1 = {Cl, C2, C3, VCy, VC2} Cl = {C3} VC1 = {VC1, VC2}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4} VC2 = {VC1,VC3}
Y3 = {c1, 2, c3,Ca,C5} C3 = {cs} VC3 =10

Stack operations: /; = pop(), add(Cy), push(VCy)
Clauses on stack: ¥1 = {{c1, 2}, {c3},{vec1, vea }}

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 10 / 13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ¢;: Volatile in 9;:
@bo = {Cl, 2, VC1} Co = {Cl, C2} VCO = {VCl}
¢1 = {Cl, C2, C3, VCy, VC2} Cl = {C3} VC1 = {VC1, VC2}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4} VC2 = {VC1,VC3}
Y3 = {c1, 2, c3,Ca,C5} C3 = {cs} VC3 =10

Stack operations: = pop(), add((;), push(VC>)
Clauses on stack: 1 = {{c1, @2}, {c3},{ca}, {ve1, ve3}}

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 10 / 13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ¢;: Volatile in 9;:
@bo = {Cl, 2, VC1} Co = {Cl, C2} VCO = {VCl}
¢1 = {Cl, C2, C3, VCy, VC2} Cl = {C3} VC1 = {VC1, VC2}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4} VC2 = {VC1,VC3}
Y3 = {c1, 2, c3,Ca,C5} C3 = {cs} VC3 =10

Stack operations: /3 = pop(), add(C3), push(VC3)
Clauses on stack: 13 = {{c1, &2}, {c3},{ca}, {5}, 0}

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 10 / 13

Stack-Based Formula Representation: Example

Given sequence S := (v, ..., 3) of formulas.
Formula v;: Cumulative in ¢;: Volatile in 9;:
@bo = {Cl, 2, VC1} Co = {Cl, C2} VCO = {vcl}
1/)1 = {Cl, C2, C3, VCy, VC2} Cl = {C3} VC1 = {VC1, VC2}
¢2 = {Cl,Cz,C3,C4,VC1,VC3} C2 = {C4} VC2 = {VC1,VC3}
Y3 = {c1, 2, c3,Ca,C5} C3 = {cs} VC3 =10

Stack operations: /3 = pop(), add(C3), push(VC3)
Clauses on stack: 13 = {{c1, &2}, {c3},{ca}, {5}, 0}

m S represented by sequence | = (o, ..., 3) of stack operations.
m Sequence / is not unique (e.g. reorderings).
m Benchmarking program translates / to incremental solver calls.

m Sequence |/ may be extracted from S or directly written by application.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 10 / 13

Generating Sequences of Formulas

¥i
S = (...t} [Roheaton

+ —
Syntactic Vi Y

Analysis

Generic lo, ...

Wi

Update
Instructions

Application Program is not available:

Benchmarking
Program

RESULT,
i=i+1

m Convert S into a standardized representation by update instructions.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

11 /13

Generating Sequences of Formulas

Application

¥i
S = <1/}0,...,1bn>
+ —
Syntactic Vi Y
Analysis

Generic lo, ...

Update
Instructions

Application Program is not available:

Benchmarking
Program

RESULT,
i=i+1

m Convert S into a standardized representation by update instructions.

Application Program is available:

m Integrate solvers directly.

m Represent S directly as sequence of update instructions.

m Set of update instructions is extensible.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

11 /13

Incremental Library Track in the SAT Race 2015

Incremental Library Track — IPASIR &‘(lT

m |PASIR = Re-entrant Incremental Satisfiability Application Program
Interface (acronym reversed)
= |PASIR has 6 methods for SAT solving:
®m add clauses and assumptions (2 methods)
w set callback for abort
w solve
= get model and failed assumptions (2 methods)

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

SAT Race 2015 slides by T. Balyo, M. Iser, C. Sinz.

Tomés Balyo, Markus Iser, Carsten Sinz — Sat Race 2015 September 22, 2015 4120

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 12 /13

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

Incremental Library Track in the SAT Race 2015

Incremental Library Track — Benchmarks g("’

m Partial MaxSat Solving (linear strengthening of a cardinality
constraint on soft clauses), 568 pMaxSat problems (industrial track,
MaxSat 2014)

w Trivial parallel portfolio SAT solver (clause order diversification), the
100 problems of the parallel track

m Finding all essential (has to be assigned in each satisfying
assignment) variables, 50 easiest instances of the main track

m Incremental SAT file interpreter, 50 files generated from HWMCC
2014 instances, 3979 SAT calls in total

m submitted by Florian Lonsing, Johannes Oetsch, and Uwe Egly

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

SAT Race 2015 slides by T. Balyo, M. Iser, C. Sinz.

Tomés Balyo, Markus Iser, Carsten Sinz — Sat Race 2015 September 22, 2015 5/20

Our Contribution:
m Benchmarking program and formula sequences generated from
hardware bounded model checking problems.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 12 /13

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

Incremental Library Track in the SAT Race 2015

Incremental Library Track — Benchmarks QS!_I

® Partial MaxSat Solving (linear strengthening of a cardinality
constraint on soft clauses), 568 pMaxSat problems (industrial track,
MaxSat 2014)

® Trivial parallel portfolio SAT solver (clause order diversification), the
100 problems of the parallel track

® Finding all essential (has to be assigned in each satisfying
assignment) variables, 50 easiest instances of the main track

® |ncremental SAT file interpreter, 50 files generated from HWMCC
2014 instances, 3979 SAT calls in total

® submitted by Florian Lonsing, Johannes Oetsch, and Uwe Egly

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

SAT Race 2015 slides by T. Balyo, M. Iser, C. Sinz.

Tomas Balyo, Markus Iser, Carsten Sinz - Sat Race 2015 September 22,2015 5/20

Our Contribution:
m Benchmarking program and formula sequences generated from
hardware bounded model checking problems.

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 12 /13

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

Incremental Library Track in the SAT Race 2015

Incremental Library Track — Results AT
solver name essent. pmax is-file pfolio total
#instances 50 568 3979 100 4697
CryptoMiniSat4 48 266 1454 0 1768
CryptoMiniSat4autotune 47 271 1452 0 1770
CoMiniSatPs1Earth 45 244 1406 12 1707
CoMiniSatPs1Sun 45 250 1434 5 1734
Glucose4 48 259 1407 1 1715
Riss505 44 234 1372 4 1654
Riss504 44 244 1370 2 1660
PicoSat961 44 165 1285 5 1499
SatUzK 43 204 842 5 1094

Tomas Balyo, Markus Iser, Carsten Sinz — Sat Race 2015

Our Contribution:

September 22, 2015

6120

SAT Race 2015 slides by T. Balyo, M. Iser, C. Sinz.

m Benchmarking program and formula sequences generated from
hardware bounded model checking problems.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

12 /13

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

Incremental Library Track in the SAT Race 2015

Incremental Library Track — Results h\\‘("‘
solver name essent. pmax | is-file | pfolio total
#instances 50 568 | 3979 | 100 4697
CryptoMiniSat4 48 266 | 1454 0 1768
CryptoMiniSat4autotune 47 271 | 1452 0 1770
CoMiniSatPs1Earth 45 244 | 1406 12 1707
CoMiniSatPs1Sun 45 250 | 1434 5 1734
Glucose4 48 259 | 1407 1 1715
Riss505 44 234 | 1372 4 1654
Riss504 44 244 | 1370 2 1660
PicoSat961 44 165 | 1285 5 1499
SatUzK 43 204 | 842 5 1094

Tomas Balyo, Markus Iser, Carsten Sinz - Sat Race 2015

Our Contribution:

September 22,2015

6/20

SAT Race 2015 slides by T. Balyo, M. Iser, C. Sinz.

m Benchmarking program and formula sequences generated from
hardware bounded model checking problems.

Egly, Lonsing, and Oetsch (TU Wien)

Automated Benchmarking

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

12 /13

http://baldur.iti.kit.edu/sat-race-2015/index.php
http://baldur.iti.kit.edu/sat-race-2015/sr15.pdf

Conclusion

Automated Benchmarking:

m Decoupled from application program used to generate formulas.
m Compact standardized representation of formula sequences.

m Useful for development of incremental solvers.

Support for Sequences of QBFs:

m Additional instructions to update quantifier prefix of a prenex CNF.

Future Work:

m Application program may depend on a particular solver.
m Do different solvers result in different sequences of formulas?

m How do solvers perform on different sequences?

Egly, Lonsing, and Oetsch (TU Wien) Automated Benchmarking 13 /13

