Automated Benchmarking of Incremental SAT and QBF Solvers

Uwe Egly Florian Lonsing Johannes Oetsch

Knowledge-Based Systems Group, Vienna University of Technology, Austria

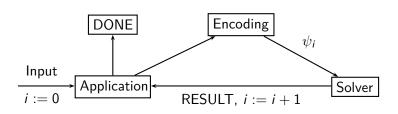
20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, 24 - 28 November 2015, Suva, Fiji

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Introduction

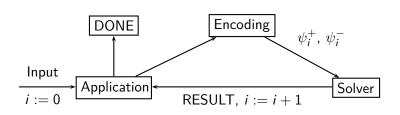
Propositional Logic (SAT):

■ Modelling NP-complete problems in formal verification, Al, ...

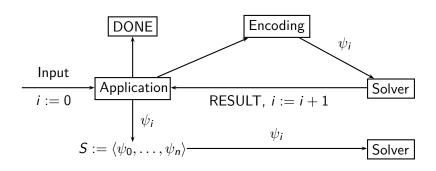

Quantified Boolean Formulas (QBF):

- Existential and universal quantification of propositional variables.
- Q_1x_1, \ldots, Q_nx_n . ϕ , where $Q_i \in \{\forall, \exists\}$ and ϕ a CNF.
- PSPACE-complete: potentially more succinct encodings than SAT.

Practice:

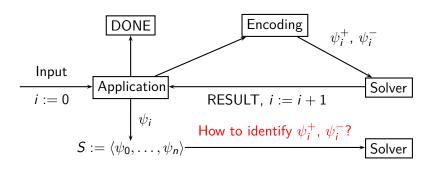

- Despite intractability, solvers often work well on structured problems.
- Applications to problems of higher complexity, e.g. NEXPTIME.
- SAT/QBF solvers are tightly integrated in application workflows.

Abstract Non-Incremental Workflow


- Application program: bounded model checker, synthesis tool,...
- Input problem solved in stepwise fashion.
- Step i: formula ψ_i written to hard disk or imported by solver via API.
- Solver starts from scratch in each step *i*: potential redundant work.
- Sequence $\langle \psi_0, \dots, \psi_n \rangle$ of syntactically related formulas.

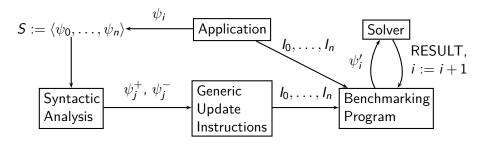
Abstract Incremental Workflow

- Step i = 0 : solver receives initial formula ψ_0 .
- Step i>0 : solver receives and solves current ψ_i incrementally.
- $\psi_i := (\psi_{i-1} \setminus \psi_i^-) \cup \psi_i^+$ obtained by adding ψ_i^+ and deleting ψ_i^- .
- Solver called incrementally: keep information learned in previous calls.
- Sequence $\langle \psi_0, \dots, \psi_n \rangle$ compactly represented by ψ_0 and ψ_i^+ , ψ_i^- .


SAT/QBF Solving in Practice

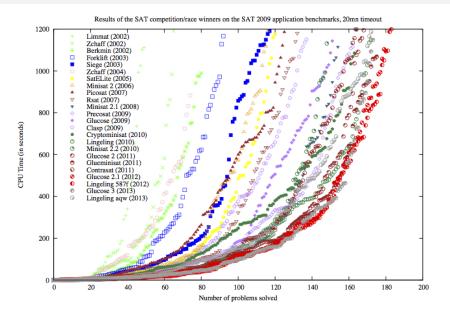
Benchmarking:

- Solver performance is crucial for practical applications.
- Solver development relies on publicly available benchmarks.
- Benchmarks generated by application programs.
- So far: focus on *non-incremental* solving.


SAT/QBF Solving in Practice

Problem:

- Lack of benchmarks for incremental solvers.
- Lack of application programs used to generate formula sequences.
- How to solve available formula sequence $\langle \psi_0, \dots, \psi_n \rangle$ incrementally?
- So far: incremental solvers tightly coupled with application programs.


Contributions

Automated Benchmarking:

- $lue{}$ Translate sequence S of related formulas into incremental solver calls.
- Identify incremental formula updates: $\psi_i := (\psi_{i-1} \setminus \psi_i^-) \cup \psi_i^+$.
- Compact representation of *S* by generic update instructions.
- Benchmarking program calls incremental solvers via standardized API.
- Tools used in the *Incremental Library Track* of the *SAT Race 2015*.

Progress in Non-Incremental SAT Solving

SAT/QBF Competitions

Competition Drives Innovation:

- Annual SAT-related events since 2002: SAT Competitions / Races.
- QBFEVALs (2004-2008, 2010, 2012), QBF Galleries (2013, 2014).
- Solver developers invent new technology: enables new applications.

Problem:

- So far, competitions have focused on *non*-incremental solving.
- No benchmarks (i.e. formula sequences) to test incremental solvers.

Our Approach:

- Conversion of available formula sequences into a standardized format.
- Comparison of incremental solvers on the standardized sequence.

Analyzing Formula Sequences

$$S := \langle \psi_0, \dots, \psi_n \rangle$$
 Syntactic Analysis
$$\psi_j^+, \ \psi_j^-$$
 Generic Stack Operations
$$0, \dots, I_n$$

Incremental Updates in $S := \langle \psi_0, \dots, \psi_n \rangle$:

- Cumulative clauses: appear in ψ_i first and in all ψ_i with i < j.
- Volatile clauses: appear in ψ_i and are removed to obtain ψ_j with i < j.

Stack-Based Representation of $\psi_j := (\psi_{j-1} \setminus \psi_j^-) \cup \psi_j^+$:

- Deletion of volatile clauses ψ_j^- by $pop \in I_j$.
- lacksquare Temporary addition of volatile clauses ψ_j^+ by $\mathrm{push} \in \mathit{I}_j$.
- lacksquare Permanent addition of cumulative clauses ψ_i^+ by $\mathtt{add} \in \mathit{I}_j.$

Given sequence $S := (\psi_0, \dots, \psi_3)$ of formulas.

Stack operations: \emptyset Clauses on stack: \emptyset

- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence / is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- lacksquare Sequence I may be extracted from S or directly written by application.

```
Stack operations: I_0 = \operatorname{add}(C_0), \operatorname{push}(VC_0)
Clauses on stack: \psi_0 = \{\{c_1, c_2\}, \{vc_1\}\}
```

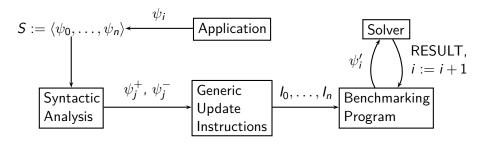
- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence / is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- lacksquare Sequence I may be extracted from S or directly written by application.

```
Stack operations: I_1 = \text{pop}(), add(C_1), push(VC_1)
Clauses on stack: \psi_1 = \{\{c_1, c_2\}, \{c_3\}, \{vc_1, vc_2\}\}
```

- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence / is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- lacksquare Sequence I may be extracted from S or directly written by application.

```
Stack operations: I_2 = pop(), add(C_2), push(VC_2)
Clauses on stack: \psi_2 = \{\{c_1, c_2\}, \{c_3\}, \{c_4\}, \{vc_1, vc_3\}\}
```

- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence / is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- lacksquare Sequence I may be extracted from S or directly written by application.

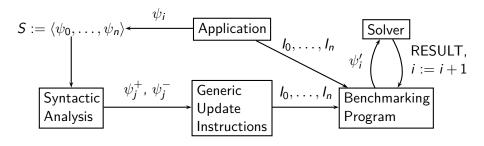

Stack operations:
$$I_3 = \text{pop}()$$
, add (C_3) , push (VC_3) Clauses on stack: $\psi_3 = \{\{c_1, c_2\}, \{c_3\}, \{c_4\}, \{c_5\}, \emptyset\}$

- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence / is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- lacksquare Sequence I may be extracted from S or directly written by application.

```
Stack operations: I_3 = \text{pop}(), add(C_3), push(VC_3) Clauses on stack: \psi_3 = \{\{c_1, c_2\}, \{c_3\}, \{c_4\}, \{c_5\}, \emptyset\}
```

- *S* represented by sequence $I = (I_0, ..., I_3)$ of stack operations.
- Sequence I is not unique (e.g. reorderings).
- Benchmarking program translates *I* to incremental solver calls.
- Sequence *I* may be extracted from *S* or directly written by application.

Generating Sequences of Formulas

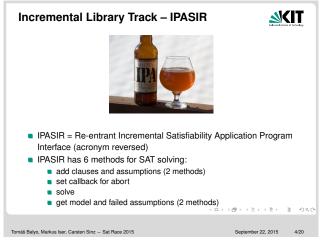

Application Program is not available:

• Convert *S* into a standardized representation by update instructions.

Application Program is available:

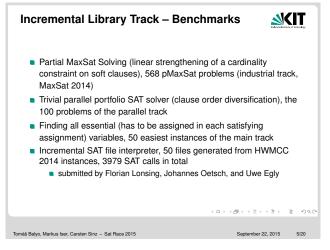
- Integrate solvers directly.
- Represent *S* directly as sequence of update instructions.
- Set of update instructions is extensible.

Generating Sequences of Formulas

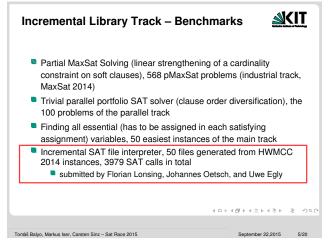


Application Program is not available:

 $lue{}$ Convert S into a standardized representation by update instructions.


Application Program is available:

- Integrate solvers directly.
- Represent S directly as sequence of update instructions.
- Set of update instructions is extensible.


SAT Race 2015 slides by T. Balyo, M. Iser, C. Sin http://baldur.iti.kit.edu/sat-race-2015/in

Our Contribution:

edu/sat-race-2015/index.php

Our Contribution:

race-2015/index.php

Our Contribution:

ncremental Library T	rack –	Resul	ts		Surfaces legislate of fed
solver name	essent.	pmax	is-file	pfolio	total
#instances	50	568	3979	100	4697
CryptoMiniSat4	48	266	1454	0	1768
CryptoMiniSat4autotune	47	271	1452	0	1770
CoMiniSatPs1Earth	45	244	1406	12	1707
CoMiniSatPs1Sun	45	250	1434	5	1734
Glucose4	48	259	1407	1	1715
Riss505	44	234	1372	4	1654
Riss504	44	244	1370	2	1660
PicoSat961	44	165	1285	5	1499
SatUZK	43	204	842	5	1094
			4 > 4	Ø > ∢ ≅ >	4 € > - €
Balyo, Markus Iser, Carsten Sinz - Sat Race 2015	5			September 22	2. 2015

Our Contribution:

ncremental Library 1	NAMES AND ADDRESS OF THE PORT OF THE					
solver name	essent.	pmax	is-file	pfolio	total	
#instances	50	568	3979	100	4697	
CryptoMiniSat4	48	266	1454	0	1768	
CryptoMiniSat4autotune	47	271	1452	0	1770	
CoMiniSatPs1Earth	45	244	1406	12	1707	
CoMiniSatPs1Sun	45	250	1434	5	1734	
Glucose4	48	259	1407	1	1715	
Riss505	44	234	1372	4	1654	
Riss504	44	244	1370	2	1660	
PicoSat961	44	165	1285	5	1499	
SatUZK	43	204	842	5	1094	
			4 🗆 > 4 6	9 > < 2 >	4 ≅ > - ≅	5
iš Balyo, Markus Iser, Carsten Sinz – Sat Race 201	5			September 22	2,2015	6/20

Our Contribution:

Conclusion

Automated Benchmarking:

- Decoupled from application program used to generate formulas.
- Compact standardized representation of formula sequences.
- Useful for development of incremental solvers.

Support for Sequences of QBFs:

Additional instructions to update quantifier prefix of a prenex CNF.

Future Work:

- Application program may depend on a particular solver.
- Do different solvers result in different sequences of formulas?
- How do solvers perform on different sequences?