
Enhancing Search-Based QBF Solving by
Dynamic Blocked Clause Elimination

Florian Lonsing1 Fahiem Bacchus2 Armin Biere3
Uwe Egly1 Martina Seidl3

1Knowledge-Based Systems Group, Vienna University of Technology, Austria

2Department of Computer Science, University of Toronto, Canada

3Institute for Formal Models and Verification, JKU Linz, Austria

20th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, 24 - 28 November, 2015, Suva, Fiji

This work is supported by the Austrian Science Fund (FWF) under grants S11408-N23 and S11409-N23.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 1 / 19

Introduction (1)

Quantified Boolean Formulas (QBF):
Propositional logic with explicitly existentially/universally quantified variables.
PSPACE-completeness: applications in AI, verification, synthesis,. . .

QBFs in Prenex CNF:
ψ := Q̂.φ: quantifier prefix Q̂ and propositional formula φ in CNF.
Q̂ := Q1v1 . . .Qnvn with Q ∈ {∀,∃} and variables vi , left-to-right ordering.

QBF Semantics:
Recursive instantiation of variables in prefix ordering.
∃xQ̂′.φ is satisfiable iff Q̂′.φ[x/⊥] or Q̂′.φ[x/>] is satisfiable.
∀xQ̂′.φ is satisfiable iff Q̂′.φ[x/⊥] and Q̂′.φ[x/>] is satisfiable.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 2 / 19

Introduction (2)

ψ[A] = ⊤/⊥ ?

Assignment
Generation

Backtracking
Clause/Cube
Learning

DONE

PCNF ψ

YES

C 6= ∅

C = ∅A′

NO

A

Search-Based QBF Solving:
QBF-specific variant of DPLL algorithm.
Generation of variable assignments (implicit traversal of assignment tree).
Case splitting and backtracking based on ∀/∃ semantics.
Given current assignment A, backtrack if PCNF ψ[A] = ⊥ or ψ[A] = >.
Clause and cube learning: QCDCL.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 3 / 19

Introduction (2)

ψ[A] = ⊤/⊥ ?

Assignment
Generation

Backtracking
Clause/Cube
Learning

DONE

PCNF ψ

YES

C 6= ∅

C = ∅A′

NO

A

Conflicting assignment: ψ[A] = ⊥, at least one clause falsified under A.
Example: ψ := ∀x∃y .(x ∨ ȳ) ∧ (x̄ ∨ y) Assignment tree related to ψ:

Left branch: ψ[{x 7→ ⊥, y 7→ >}] = ⊥
Right branch: ψ[{x 7→ >, y 7→ ⊥}] = ⊥

x

y

⊤ ⊥

y

⊥ ⊤

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 3 / 19

Introduction (2)

ψ[A] = ⊤/⊥ ?

Assignment
Generation

Backtracking
Clause/Cube
Learning

DONE

PCNF ψ

YES

C 6= ∅

C = ∅A′

NO

A

Satisfying assignment: ψ[A] = >, all clauses of CNF are satisfied under A.
Example: ψ := ∀x∃y .(x ∨ ȳ) ∧ (x̄ ∨ y) Assignment tree related to ψ:

Left branch: ψ[{x 7→ ⊥, y 7→ ⊥}] = >
Right branch: ψ[{x 7→ >, y 7→ >}] = >

x

y

⊤ ⊥

y

⊥ ⊤

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 3 / 19

Introduction (3)

Observation:
Uniformity of CNF representation allows for efficient data structures.
Problem: CNF introduces a bias towards detecting conflicting assignments.
In general, detecting satisfying assignments involves assigning more variables.

Idea:
Detect satisfying assignments earlier to backtrack earlier.
Generalization: “assignment A is satisfying iff PCNF ψ[A] is satisfiable”.
ψ[A] = > no longer required, i.e. some clauses may not be satisfied under A.
Problem: how to efficiently detect whether ψ[A] is satisfiable?

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 4 / 19

Contributions

ψ[A] = ⊤/⊥ ?

Assignment
Generation

Backtracking
Clause/Cube
Learning

DONE

PCNF ψ

YES

C 6= ∅

C = ∅A′

NO

A

Blocked Clause Elimination for QBF (QBCE)
Satisfiability-preserving elimination of certain clauses from a PCNF.
So far, QBCE has been applied for PCNF preprocessing only.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 5 / 19

Contributions

QBCE(ψ[A]) = ∅ ? ψ[A] = ⊤/⊥ ?

Assignment
Generation

Backtracking
Clause/Cube
Learning

DONE

PCNF ψ

A

NO

YES
YES

C 6= ∅

C = ∅A′

NO

Search-Based QBF Solving with Dynamic QBCE:
QBCE interleaved with assignment generation.
Incomplete polynomial-time detection of generalized satisfying assignments.
If QBCE eliminates all clauses of ψ[A], then ψ[A] is satisfiable.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 5 / 19

Contributions

 0 100 200 300 400
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

T
im

e

Solved Instances

QBF Gallery 2014 applications track

no-qbce
qbce-inp

qbce-dyn

Experimental Results:
Dynamic QBCE in search-based QBF solver DepQBF (version 5.0).
58% more application instances solved with dynamic QBCE.
Full preprocessing may affect our approach negatively.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 5 / 19

Example (1)

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 6 / 19

Example (2)

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Consider satisfying assignment A = {z 7→ ⊥, z ′ 7→ ⊥, u 7→ ⊥, y 7→ ⊥}.
Derive a cube (conjunction of literals) from A and ψ.
After backtracking, cube helps to prevent repeating (subset of) A.
Solution driven cube learning (SDCL) in search-based QBF solving.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 7 / 19

Cube Learning as a Proof System (1)

Let ψ = Q̂.φ be a PCNF.

Axiom (Model Generation):

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

with ψ[A] = > (init)

Every clause of ψ is satisfied under A: ψ[A] = >.
Cube C is constructed from A such that v ∈ C if v 7→ > and v̄ ∈ C if v 7→ ⊥.
C is a propositional implicant of the CNF part φ: C ⇒ φ.
Several heuristics applicable when constructing C .

E. Giunchiglia, M. Narizzano, A. Tacchella: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. JAIR 2006.

R. Letz: Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas. TABLEAUX 2002.

L. Zhang, S. Malik: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. CP 2002.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 8 / 19

Example (3)

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Derive the cube C = (z̄ ∧ z̄ ′ ∧ ū ∧ ȳ) by model generation, backtrack and
obtain the satisfying assignment A′ = {z 7→ ⊥, z ′ 7→ ⊥, u 7→ >, y 7→ >}.
Derive another cube C ′ = (z̄ ∧ z̄ ′ ∧ u ∧ y) by model generation.
Observe: both subcases of the universal variable u are satisfiable.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 9 / 19

Cube Learning as a Proof System (2)

Let ψ = Q̂.φ be a PCNF.

Resolution:

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

C1,C2 are cubes, quant(p) = ∀,
{x , x̄} 6⊆ (C1 ∪ C2), p̄ 6∈ C1, p 6∈ C2

(res)

Reduction:

C ∪ {l}
C

C is a cube, quant(l) = ∃, {x , x̄} 6⊆ (C ∪ {l}),
l ′ <Q̂′ l for all l ′ ∈ C with quant(l ′) = ∀ (red)

A PCNF ψ is satisfiable iff the empty cube is derivable by rules init, res, red .

Example (continued):
∃z ,z ′∀u∃y .φ

(z̄ ∧ z̄ ′ ∧ ū ∧ ȳ)

(z̄ ∧ z̄ ′ ∧ ū)

(z̄ ∧ z̄ ′ ∧ u ∧ y)

(z̄ ∧ z̄ ′ ∧ u)

z̄ ∧ z̄ ′

∅
Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 10 / 19

Example (4)

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Learned cubes represent paths in search tree.
Cubes are derived starting from leaves in bottom up fashion.
Consider cube resolvent (z̄ ∧ z̄ ′): ψ[z 7→ ⊥, z ′ 7→ ⊥] is satisfiable.
A posteriori analysis: no need to inspect subtree rooted at branch z̄ , z̄ ′.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 11 / 19

Generalized Model Generation

Let ψ = Q̂.φ be a PCNF.

Axiom (Generalized Model Generation):

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

such that ψ[A] is satisfiable (ginit)

Caution: assignment A must have certain properties.
Some clauses of ψ may not be satisfied under A: ψ[A] 6= >.
C is not a propositional implicant of the CNF part φ: C 6⇒ φ.
Generalized model generation potentially derives shorter cubes.
How to efficiently check whether ψ[A] is satisfiable? PSPACE-completeness!

Example (continued):
∃z ,z ′∀u∃y .φ[{z 7→ ⊥, z ′ 7→ ⊥}] =
∀u∃y .(u ∨ ȳ) ∧ (ū ∨ y) satisfiable

z̄ ∧ z̄ ′

∅

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 12 / 19

Dynamic Blocked Clause Elimination for QBF

Blocked Clause Elimination for QBF (QBCE):
A clause C is blocked if it contains an existential blocking literal l .
Finding blocking literals l : inspect all clauses C ′ with ¬l ∈ C ′.
QBCE can be carried out in polynomial time wrt. formula size.
QBCE preserves satisfiability.

Dynamic QBCE:
Interleave QBCE with search process.
Incremental application based on extended assignments: ψ[A], ψ[A ∪ A′], . . .
If QBCE eliminates all clauses of ψ[A] then ψ[A] is satisfiable.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 13 / 19

Dynamic QBCE Example

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (z ∨ u ∨ ȳ) ∧ (z ′ ∨ ū ∨ y) ∧ (z̄ ∨ ū ∨ ȳ) ∧ (z̄ ′ ∨ u ∨ y)

Consider initial assignment A = ∅ and ψ[A].
No clause blocked in ψ[A].

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 14 / 19

Dynamic QBCE Example

z

z
′

u

y

⊤ ⊥

y

⊥ ⊤

u

y

⊥ ⊥

y

⊥ ⊤

z
′

u

y

⊤ ⊥

y

⊥ ⊥

u

y

⊥ ⊥

y

⊥ ⊥

∃z ,z ′∀u∃y .
(u ∨ ȳ) ∧ (ū ∨ y) ∧ (⊥ ∨ u ∨ ȳ) ∧ (⊥ ∨ ū ∨ y) ∧ (> ∨ ū ∨ ȳ) ∧ (> ∨ u ∨ y)

Consider A = {z 7→ ⊥, z ′ 7→ ⊥} and ψ[A] = ∀u∃y .(u ∨ ȳ) ∧ (ū ∨ y).
All clauses are blocked in ψ[A], hence ψ[A] is satisfiable.
By generalized model generation, learn cube C = (z̄ ∧ z̄ ′) and finally ∅.
Observe: we proved satisfiability without considering ∀u during search.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 14 / 19

Experiments (1)

Solver Solved Unsat Sat Time
qbce-dyn 441 222 219 573,142
qell-nc 434 302 132 563,989
qell-c 424 300 124 577,760
rareqs 414 272 142 611,742
qbce-inp 360 161 199 735,073
caqe 359 197 162 750,173
ghostq 347 166 181 752,950
qesto 331 188 143 767,757
no-qbce 278 128 150 880,485

Implementation in search-based QBF solver DepQBF.
Application benchmarks used in the QBF Gallery 2014 without preprocessing.
no-qbce: plain DepQBF without dynamic QBCE.
qbce-inp: DepQBF with restricted dynamic QBCE.
qbce-dyn: DepQBF with fully dynamic QBCE.
Comparison to recently published solvers: caqe, qell, qesto.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 15 / 19

Experiments (1): Runtime

 0 100 200 300 400
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800
no-qbce

qesto
ghostq

caqe
qbce-inp

rareqs
qell-c

qell-nc
qbce-dyn

Solved instances (x-axis) sorted by run times (y-axis).

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 16 / 19

Experiments (2)

Solver Solved Unsat Sat Time
rareqs 547 314 233 379,916
qell-nc 501 301 200 445,369
qell-c 495 299 196 452,034
qesto 463 248 215 558,703
qbce-dyn 405 201 204 624,719
caqe 395 191 204 647,227
no-qbce 390 205 185 651,909
qbce-inp 390 205 185 655,329
ghostq 350 176 174 739,294

Application benchmarks with preprocessing.
Full preprocessing by Bloqqer (none solved): http://fmv.jku.at/bloqqer/

Preprocessing may blur formula structure and thus hinder dynamic QBCE.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 17 / 19

http://fmv.jku.at/bloqqer/

Experiments (3)

Solver Solved Unsat Sat Time
qell-nc 483 306 177 480,736
qell-c 474 308 166 494,281
rareqs 471 272 199 509,489
qbce-dyn 463 243 220 533,829
caqe 435 226 209 585,618
qesto 401 212 189 662,695
no-qbce 400 221 179 651,739
qbce-inp 393 219 174 657,400
ghostq 306 148 158 823,312

Application benchmarks with partial preprocessing.
Only QBCE and expansion of universal variables.
Moderate performance improvement of dynamic QBCE.
Mostly detrimental to other solvers.

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 18 / 19

Conclusion

CNF-based QBF Solving:
Falsifying assignments detected more easily than satisfying ones.
Initially, long cubes are learned (propositional implicants of CNF).

Generalized Model Generation:
Detect satisfiable subtrees early, learn shorter cubes (no implicants).
Exponentially more powerful proof system.
Dynamic QBCE: incomplete polynomial time satisfiability check.

Future Work:
Combination of dynamic QBCE and preprocessing.

DepQBF version 5.0: http://lonsing.github.io/depqbf/

Lonsing, Bacchus, Biere, Egly, and Seidl (. . .) Search-Based QBF Solving and Dynamic QBCE 19 / 19

http://lonsing.github.io/depqbf/

