
1

Efficient Clause Learning for Quantified Boolean Formulas via
QBF Pseudo Unit Propagation

Florian Lonsing1 Uwe Egly1 Allen Van Gelder2

1Vienna University of Technology
http://www.kr.tuwien.ac.at/staff/{egly,lonsing}

2University of California at Santa Cruz, USA
http://www.cse.ucsc.edu/~avg

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

http://www.kr.tuwien.ac.at/staff/{egly,lonsing}
http://www.cse.ucsc.edu/~avg

2

Overview (1/2)

Conflict-Driven Clause Learning (CDCL): [SS96]
Crucial for the performance of modern SAT solvers.
Resolution proofs, trimming the search space.
Extensions of CDCL for SAT to QBF: QCDCL.

Traditional QCDCL for QBF: [ZM02, GNT02, GNT06, Let02]
Like CDCL is based on resolution, QCDCL is based on Q-resolution.
Q-resolution derivation of the clause to be learned.
Tautological resolvents must be avoided explicitly.

Problem:
Common approach to avoiding tautologies in traditional QCDCL has an
exponential worst case [VG12].
The derivation of a single learned clause might have an exponential number of
intermediate resolvents.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

2

Overview (1/2)

Conflict-Driven Clause Learning (CDCL): [SS96]
Crucial for the performance of modern SAT solvers.
Resolution proofs, trimming the search space.
Extensions of CDCL for SAT to QBF: QCDCL.

Traditional QCDCL for QBF: [ZM02, GNT02, GNT06, Let02]
Like CDCL is based on resolution, QCDCL is based on Q-resolution.
Q-resolution derivation of the clause to be learned.
Tautological resolvents must be avoided explicitly.

Problem:
Common approach to avoiding tautologies in traditional QCDCL has an
exponential worst case [VG12].
The derivation of a single learned clause might have an exponential number of
intermediate resolvents.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

3

Overview (2/2)

Our Work: efficient polynomial time procedure for QCDCL.
QCDCL based on QBF Pseudo Unit Propagation (QPUP) [VG12]: carefully
select the order of resolution steps in QCDCL to avoid tautologies.
Learn a single non-tautological clause in polynomial time.
QPUP-based QCDCL is compatible with other approaches (e.g. Alexandra’s talk).
Implementation in the search-based QBF solver DepQBF.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

4

Quantified Boolean Formulae (QBF)

Syntax
Prenex CNF: quantifier-free CNF over quantified Boolean variables.
PCNF ψ := Q1x1 . . .Qnxn. φ, where Qi ∈ {∃, ∀}, no free variables.
Qi xi ≤ Qi+1xi+1: variables are linearly ordered.

Example

A CNF: (x ∨ ¬y) ∧ (¬x ∨ y), and a PCNF: ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y).

Search-based QBF Solving with Clause Learning:
Implicitly enumerate paths in a semantic tree by recursive variable instantiation.
Terminology “QCDCL”: conflict-driven clause learning (CDCL) for QBF.
Learn clauses at unsatisfiable (i.e. conflicting) branches in the search tree.
Like CDCL in SAT: QCDCL is based on resolution for QBF.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

5

Resolution for QBF

Q-Resolution:
Combination of universal reduction and propositional resolution.
Sound and refutational-complete proof system for QBF: Q-resolution proofs.

Definition ([BKF95])

Given a clause C , universal reduction (UR) on C produces the clause

UR(C) := C \ {l ∈ L∀(C) | ∀l ′ ∈ L∃(C) : var(l ′) < var(l)},

where < is the linear variable ordering given by the quantifier prefix.

Universal reduction deletes trailing universal literals from clauses.

Definition ([BKF95])

Let C1, C2 be non-tautological clauses where v ∈ C1,¬v ∈ C2 for an ∃-variable v .
Tentative Q-resolvent of C1 and C2: C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v ,¬v}.
If {x ,¬x} ⊆ C1 ⊗ C2 for some variable x , then no Q-resolvent exists.
Otherwise, the non-tautological Q-resolvent is C := UR(C1 ⊗ C2).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

1

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

1 2

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

1 2 3

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

1 2 3

4

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

6

Boolean Constraint Propagation for QBF (QBCP)

Generate assignments by assumptions, unit clause rule, universal reduction (UR).
Like BCP for SAT: antecedent clauses and implication graphs.
Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Implication graph:

1 2 3 ∅

4

Assignment A := {}.
Assumption: A := A ∪ {1}.
Clause (-1 2) is unit under A

A := A ∪ {2} = {1, 2}
ante(2) := (-1 2)

Clause (3 5 -2) is unit under A and UR.
A := A ∪ {3} = {1, 2, 3}
ante(3) := (3 5 -2)

Clause (4 5 -2) is unit under A and UR.
A := A ∪ {4} = {1, 2, 3, 4}
ante(4) := (4 5 -2)

Clause (-3 -4) is conflicting under A.
ante(∅) := (-3 -4)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

7

Review: Traditional QCDCL

Start at conflicting clause, resolve on existential variables in reverse assignment
order until the resolvent is asserting (i.e. will be unit after backtracking).
Resolve on existential variables which were assigned as unit literals, using clauses
(i.e. antecedents) which became unit during QBCP.
Tautological resolvents might occur but must be avoided by “resolving around”:
⇒ deviate from strict reverse assignment order [GNT06].
Worst case exponential number (in |IG|) of intermediate resolvents [VG12].

Example (continued)

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

Clause (-3 -4) conflicting:

1 2 3 ∅

4

Assignment A = {1, 2, 3, 4}
Assignment order: 1, 2, 3, 4
Resolve on: 4, 2, 3, 2.
Derivation of learned clause (-1):

(-1)

(-1 5 -2)

(-1 -3)

(-3 -5 -2)

(-3 -4) (4 -5 -2)

(-1 2)

(3 5 -2)

(-1 2)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

8

Towards Efficient QCDCL (1/3)

QBF Pseudo Unit Propagation (QPUP): [VG12]
Basic idea: given an implication graph (IG), associate the conflict node ∅ and
each variable x assigned by the unit literal rule with a “QPUP clause” qpup(x).
Walking through the entire IG in assignment ordering, compute qpup(x) by
resolving ante(x) with already computed qpup(y) s.t. ¬y ∈ ante(x).
Resolve in assignment ordering: tautologies cannot occur by construction.

Compare: traditional QCDCL resolves in reverse assignment ordering.
Finally, the non-tautological and asserting QPUP clause qpup(∅) related to the
conflict node ∅ can be learned.

Example (to be continued)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

qpup(2) := ante(2) = (-1 2)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

qpup(4) := ante(4) = (-3 4)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

(-3 5)

ante(5) = (-4 5) (-3 4) = qpup(4)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

(-3 6)

ante(6) = (-5 6) (-3 5) = qpup(5)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

(-1 -3 7)

(-1 7 10 -6)

ante(7) = (7 10 -2 -6) (-1 2) = qpup(2)

(-3 6) = qpup(6)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

(-1 -3 8)

(-1 8 -10 -6)

ante(8) = (8 -10 -2 -6) (-1 2) = qpup(2)

(-3 6) = qpup(6)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

(-1 -3)

(-1 -3 -8)

ante(∅) = (-7 -8) (-1 -3 7) = qpup(7)

(-1 -3 8) = qpup(8)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

9

Towards Efficient QCDCL (2/3)

Example (continued; computing QPUP clauses)

Assumptions: 1, 3
Assignment order: 1, 2,. . . , 8.

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

qpup(2) = (-1 2)
qpup(4) = (-3 4)
qpup(5) = (-3 5)
qpup(6) = (-3 6)
qpup(7) = (-1 -3 7)
qpup(8) = (-1 -3 8)
qpup(∅) = (-1 -3)

The clause qpup(∅) = (-1 -3) is non-tautological and asserting and can be learned.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

10

Towards Efficient QCDCL (3/3)

Problem:
Computing QPUP clauses for every n ∈ IG: total |IG| resolution steps.
Traversal starts at assumption nodes ⇒ full traversal, prohibitive at each conflict.
Goal: find alternative start points closer to the conflict node ∅.

Unique Implication Points (UIPs):
Nodes in the implication graph which are on every path from the most recent
assumption to the conflict node ∅.
Comprehensive theory in SAT CDCL [SLM09].
A UIP is a good candidate as a start point to compute QPUP clauses.

Example (continued)

1 2

7

3 4 5 6 ∅

8

Node 6 is the first UIP (i.e. closest to ∅).
Node 5 is the second UIP.
Node 4 is the third UIP.
Node 3 is the fourth UIP.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

11

Efficient QPUP-based QCDCL (1/2)

Two-Phase Algorithm:
Phase 1: starting at the conflict node ∅, walk back through the implication graph
in reverse assignment order to find suitable start points.

Focus on finding UIPs.
In general, a single UIP as a start point is not enough.
At the latest, phase 1 terminates when reaching the assumption nodes.

Phase 2: compute the QPUP clauses qpup(x) for all nodes x reachable when
walking from the start points found in phase 1 towards the conflict node ∅.

Unlike in traditional QCDCL, here resolutions are done in assignment order.

Goal:
The non-tautological and asserting QPUP clause qpup(∅) of the conflict node ∅
computed in phase two will be learned.
Challenge: what nodes are suitable start points?

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

11

Efficient QPUP-based QCDCL (1/2)

Two-Phase Algorithm:
Phase 1: starting at the conflict node ∅, walk back through the implication graph
in reverse assignment order to find suitable start points.

Focus on finding UIPs.
In general, a single UIP as a start point is not enough.
At the latest, phase 1 terminates when reaching the assumption nodes.

Phase 2: compute the QPUP clauses qpup(x) for all nodes x reachable when
walking from the start points found in phase 1 towards the conflict node ∅.

Unlike in traditional QCDCL, here resolutions are done in assignment order.

Goal:
The non-tautological and asserting QPUP clause qpup(∅) of the conflict node ∅
computed in phase two will be learned.
Challenge: what nodes are suitable start points?

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

12

Efficient QPUP-based QCDCL (2/2)

Example (computing QPUP clauses from start points)

1 2

7

3 4 5 6 ∅

8

p cnf 10 7
e 1 3 4 5 7 8 0
a 10 0
e 2 6 0
(-1 2),
(-3 4),(-4 5),(-5 6),
(7 10 -2 -6),(8 -10 -2 -6),
(-7 -8)

Node 6 is the 1-UIP, {7, 8, ∅} reachable, qpup(∅) = (10 -10 -2 -6) tautological.
Node 5 is the 2-UIP, {6, 7, 8, ∅} reachable, but qpup(∅) = (-5 10 -10 -2).
Node 4 is the 3-UIP, {5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-4 10 -10 -2).
Node 3 is the 4-UIP, {4, 5, 6, 7, 8, ∅} reachable, but qpup(∅) = (-3 10 -10 -2).
⇒ impossible to use a UIP as the single start point.

Observe:
Node 5 is the 2-UIP, but qpup(∅) = (-5 10 -10 -2) is tautological.
⇒ must eventually resolve on variable 2 to avoid tautology.

Nodes {1, 5} are suitable start points:
{2, 6, 7, 8, ∅} reachable and qpup(∅) = (-1 -5)

Compare:
Using the assumptions {1, 3} as trivial start points produces qpup(∅) = (-1 -3).

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

13

Experiments (1/2)

Implementation:
Search-based, clause-learning QBF solver DepQBF.
Features: traditional QCDCL and QPUP-based QCDCL.
Our implementation is more sophisticated than the procedure sketched before.
No QPUP clauses are computed during the search for start points.

Example (formula class with exponential traditional QCDCL [VG12])
Each formula in this class can be decided by learning a single unit clause. The derivation of that
learned clause by traditional QCDCL has an exponential number of resolution steps.

Size Parameter 1 2 3 4 5 6 7 8 9 10
Traditional QCDCL 6 14 30 62 126 254 510 1022 2046 4094
QPUP-based QCDCL 6 10 14 18 22 26 30 34 38 42

Table: number of resolutions in DepQBF to derive the single learned unit clause.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

14

Experiments (2/2)

Benchmarks from Previous QBF Evaluations:
Improvements with QPUP-based QCDCL.
Lazy QPUP-based QCDCL: learn a clause without explicitly deriving it.

Conservatively predict the set literals definitely in the learned clause.
Further experimental results: see the QBF Gallery 2013.

QBFEVAL’10 (568 formulas, no preprocessing)
Lazy QPUP 393 (170 s, 223 u)
QPUP 392 (170 s, 222 u)
Trad. QCDCL 386 (167 s, 219 u)

Instances solved (sat, unsat).

Intel Xeon E5450, 3.00 GHz, timeout 900
seconds, 8 GB memory limit.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 300 310 320 330 340 350 360 370 380 390 400

T
im

e
 (

s
e
c
o
n
d
s
)

Solved Formulae

Lazy QPUP
QPUP

Trad. QCDCL

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

15

Conclusions

Traditional QCDCL for QBF:
Based on implication graphs resulting from QBCP.
Start at conflict node, resolve on variables in reverse assignment order.
Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:
Start at internal nodes of the implication graph, resolve on variables in
assignment order working towards the conflict node.
With the right set of start point, tautologies cannot occur by construction.
For practical efficiency: finding start points close to the conflict node.
Compatible with other approaches in search-based QBF solving.

Future Work:
Procedural improvements.
More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

http://lonsing.github.com/depqbf/

15

Conclusions

Traditional QCDCL for QBF:
Based on implication graphs resulting from QBCP.
Start at conflict node, resolve on variables in reverse assignment order.
Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:
Start at internal nodes of the implication graph, resolve on variables in
assignment order working towards the conflict node.
With the right set of start point, tautologies cannot occur by construction.
For practical efficiency: finding start points close to the conflict node.
Compatible with other approaches in search-based QBF solving.

Future Work:
Procedural improvements.
More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

http://lonsing.github.com/depqbf/

15

Conclusions

Traditional QCDCL for QBF:
Based on implication graphs resulting from QBCP.
Start at conflict node, resolve on variables in reverse assignment order.
Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:
Start at internal nodes of the implication graph, resolve on variables in
assignment order working towards the conflict node.
With the right set of start point, tautologies cannot occur by construction.
For practical efficiency: finding start points close to the conflict node.
Compatible with other approaches in search-based QBF solving.

Future Work:
Procedural improvements.
More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

http://lonsing.github.com/depqbf/

15

H. Kleine Büning, M. Karpinski, and A. Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.
In AAAI/IAAI, pages 649–654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas.
In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

J. P. Marques Silva, I. Lynce, and S. Malik.
Conflict-Driven Clause Learning SAT Solvers.
In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 131–153. IOS Press, 2009.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

15

João P. Marques Silva and Karem A. Sakallah.
GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

Allen Van Gelder.
Contributions to the Theory of Practical Quantified Boolean Formula
Solving.
In Michela Milano, editor, CP, volume 7514 of LNCS, pages 647–663.
Springer, 2012.

L. Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages 200–215.
Springer, 2002.

Florian Lonsing, Uwe Egly, Allen Van Gelder Efficient Clause Learning for Quantified Boolean Formulas via QPUP

