A Theoretical Framework for Symbolic Quick Error Detection

FLORIAN LONSING SUBHASISH MITRA CLARK BARRETT

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020 Preprint: https://arxiv.org/abs/2006.05449

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

Context: Pre-Silicon Verification

- Our focus: processor designs.
- Formally verify model of a design (e.g. Verilog).
- Model checking vs. non-formal simulation or testing.

Soundness of Bug-Finding

Does $P \in Spec$ hold in M?

- If $P \in Spec$ fails then $B \in M$.
- Property P covers bug B.

Soundness ≈ no spurious cex

Does $P \in Spec$ hold in M?

- If $B \in M$ then $P \in Spec$ fails.
- Property P covers bug B.

Completeness ≈ Spec covers all bugs

• "Have I written enough properties?" [Katz et al. CHARME'99].

Does $P \in Spec$ hold in M?

Challenge: making Spec complete.

Does $P \in Spec$ hold in M?

Spec: manual writing of implementation-specific properties.

Does $P \in Spec'$ hold in M'?

- Spec: manual writing of implementation-specific properties.
- Model/design changes → Spec to be adapted (manually).

Does $P \in Spec'$ hold in M'?

- Spec: manual writing of implementation-specific properties.
- Model/design changes → Spec to be adapted (manually).
- Completeness depending on Spec.

Symbolic Quick Error Detection (SQED)

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).

Symbolic Quick Error Detection (SQED)

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).
- Self-consistency: universal property, no manual writing.

SQED: Industrial Strength

Traditional verification:

(Constrained) random simulation, directed tests, formal.

Our Contributions: SQED Formal Proofs

Does $P \in Spec$ hold in M? \approx Is M self-consistent?

- 1. Soundness: no spurious cex.
- 2. (Conditional) completeness: all bugs covered (BMC depth).
- 3. Formal framework: abstract processor model.

Self-Consistency

- Function f: equivalent inputs → equivalent outputs.
- Functional congruence property:

$$\forall x, x' : x = x' \rightarrow f(x) = f(x')$$

Self-Consistency

Processor Design M:

Self-Consistency

Processor Design M:

HW designs have complex internal state (pipeline,...).

- State s_0 : mapping from locations \mathcal{L} to values.
- (Non-)architectural parts of $s_0 = (s_a, s_{na})$.
- \mathcal{L} : regs. and mem. locations, value $s_0(l) = s_a(l) = v$.

- Instruction i = (op, l, (l', l'')), one-step execution.
- Opcode op, input locations (l', l''), output location l.
- Transition: $T(s_0, i) = s_1, s_0 = (s_a, s_{na}), s_1 = (s_a', s_{na}').$

Example: register identifiers

$$\mathcal{L} = \{0, 1, ..., 31\}$$
 $\mathcal{L}_{0} = \{0, ..., 15\}$
 $\mathcal{L}_{D} = \{16, ..., 31\}$
 $L_{D}(l) = l + 16$

- Partition of \mathcal{L} : original and duplicate locations \mathcal{L}_0 , \mathcal{L}_D .
- Arbitrary, fixed bijective mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$.
- Self-consistency property based on mapping L_D.

Example:

$$i_0 = (ADD, l_{12}, (l_4, l_8))$$

 $L_D(l) = l + 16$
 $i_D = (ADD, l_{28}, (l_{20}, l_{24}))$

- Original instruction $i_0 = (op, l, (l', l''))$.
- Duplicate $i_D = Dup(i_O) = (op, L_D(l), L_D(l', l''))$.

- Original instruction $i_0 = (op, l, (l', l''))$.
- Duplicate $i_D = Dup(i_O) = (op, L_D(l), L_D(l', l''))$.
- Original/duplicate i_O/i_D operates on $\mathcal{L}_O/\mathcal{L}_D$ only.

- Given L_D , state s_0 QED-consistent $\leftrightarrow s_0(\mathcal{L}_D) = s_0(\mathcal{L}_D)$.
- Matching values at original/duplicate locations.

- Given L_D , state s_0 QED-consistent $\leftrightarrow s_0(\mathcal{L}_D) = s_0(\mathcal{L}_D)$.
- Matching values at original/duplicate locations.
- Correct execution of i_O/i_D preserves QED-consistency.

- $i_O = i_{O,1}, ..., i_{O,n}$ and $i_D = i_{D,1}, ..., i_{D,n}$ with $i_D = Dup(i_O)$.
- QED test: concatenation $i = i_0 :: i_D$ of 2n instructions.
- Correct execution of i preserves QED-consistency.

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping \mathcal{L}_{D} : $\mathcal{L}_{O} \to \mathcal{L}_{D}$

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_D: \mathcal{L}_O \to \mathcal{L}_D$ n = 1Select *n* original instructions i_0 Get *n* duplicate instructions $i_D = Dup(i_O)$ using L_D

Using BMC in SQED

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping L_{D} : $\mathcal{L}_{O} \to \mathcal{L}_{D}$

$$n = 1$$

Select n original instructions i_0

Get n duplicate instructions $i_D = Dup(i_O)$ using L_D

QED test
$$i = i_0 :: i_D$$

Model: execute i (length 2n) in QED-consistent initial state s_0

Using BMC in SQED

Select partition \mathcal{L}_{O} , \mathcal{L}_{D} of \mathcal{L} and mapping $L_{D} \colon \mathcal{L}_{O} \to \mathcal{L}_{D}$

$$n = 1$$

Select n original instructions i_0

Get n duplicate instructions $i_D = Dup(i_O)$ using L_D

QED test
$$i = i_0 :: i_D$$

Model: execute i (length 2n) in QED-consistent initial state s_0

final state s_{2n}

 s_{2n} QED-consistent?

Abstract Specification Relation

```
\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall \ l \in \mathcal{L}.
(l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land
(l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))
```

• Transition T(s, i) = s'

Abstract Specification Relation

```
\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall l \in \mathcal{L}.

(l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land

(l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))
```

• Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:

Abstract Specification Relation

```
\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall \ l \in \mathcal{L}.
 (l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land 
 (l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))
```

- Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:
 - 1. all non-output locations unchanged, and

Abstract Specification Relation

```
\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall \ l \in \mathcal{L}.

(l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land

(l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))
```

- Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:
 - 1. all non-output locations unchanged, and
 - 2. correct output produced for given input values.
 - Output specification: $SpecOut: I \times V^2 \rightarrow V$.

Abstract Specification Relation

```
\forall s, s' \in S, i \in I. \ Spec(s, i, s') \leftrightarrow \forall \ l \in \mathcal{L}.

(l \neq LocOut(i) \rightarrow s(l) = s'(l)) \land

(l = LocOut(i) \rightarrow s'(l) = SpecOut(i, s(LocIn(i))))
```

- Transition T(s, i) = s' according to $Spec \subseteq S \times I \times S$ iff:
 - 1. all non-output locations unchanged, and
 - 2. correct output produced for given input values.
 - Output specification: SpecOut: $I \times V^2 \rightarrow V$.
- Abstract spec needed only for theory, not practice.

Bugs and Processor Correctness

Processor P is correct wrt. Spec:

- $\forall s \in S, i \in I. reach(s) \rightarrow Spec(s, i, T(s, i)).$
- All instructions execute correctly in all reachable states.

Bug:

- Instruction i_b and set $S_b \subseteq S$ of bug-triggering states.
- $S_b = \{ s \in S \mid reach(s) \land \sim Spec(s, i_b, T(s, i_b)) \}$

Bug Triggering

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states Init.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states Init.

Single-instruction (SI) bug:

- $\exists s \in Init, i \in I. \sim Spec(s, i, T(s, i)).$
- No setup sequence, well-studied approaches to checking.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in Init, i \in I. Spec(s, i, T(s, i)).$
- All instructions execute correctly in all initial states *Init*.

Single-instruction (SI) bug:

- $\exists s \in Init, i \in I. \sim Spec(s, i, T(s, i)).$
- No setup sequence, well-studied approaches to checking.

Assumption: P is SI-correct.

Soundness of SQED

Soundness of SQED

Initial state

- Flexibility in choosing L_D .
- QED-consistent initial state s_0 .

 \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o} \mathcal{L}_{o}

Initial state

QED test $\mathbf{i} = (\mathbf{i}_{0,1}, \dots, \mathbf{i}_{0,n}) :: (\mathbf{i}_{D,1}, \dots, \mathbf{i}_{D,n})$ for some L_D .

- QED-consistent initial state s_0 .
- Let $i_b = Dup(i_{0,1})$: $i_{0,1}$ meets Spec due to SI-correctness.

QED test $i = (i_{0,1}, ..., i_{0,n}) :: (i_{D,1}, ..., i_{D,n})$ for some L_D .

• Setup sequence $i_{0,1}, \dots, i_{0,n}$ to reach triggering state $s_n \in S_b$.

- Setup sequence $i_{0,1}, \dots, i_{0,n}$ to reach triggering state $s_n \in S_b$.
- Bug instruction $i_b = Dup(i_{0,1})$ fails in s_n .

- E.g. wrong value at output location l of i_b in s_{n+1} .
- Correct value at original output location l' of $i_{0,1}$ in s_1 .

- Mismatching values at locations l and l' in s_{2n} .
- Final state s_{2n} QED-inconsistent.

Conditional Completeness

Theorem: if a bug-specific QED test i exists, then i fails.

Extensions: Reset Instructions

Extensions: Reset Instructions

- Bug set up and triggered by $i_1, \dots, i_k = i_h$.
- No duplication: check states after $i_k = i_b$ with(out) reset.

- Bug set up and triggered by $i_1, ..., i_k = i_h$.
- Execute $i_1, ..., i_k = i_b$ from $s_l \in Init$: wrong value in state s.

- Execute hard reset in state s, get back to s_I .
- Idea: execute $i_1, \dots, i_k = i_b$ again with soft reset before i_b .

- Execute soft reset in bug-triggering state before $i_k = i_b$.
- Make use of SI correctness.

- Bug instruction $i_k = i_b$ executes correctly.
- Compare s and final state s'.

• QED test with reset fails iff $s(l) \neq s'(l)$ for a location l.

Theorem (full completeness): *if P is SI correct and has no failing QED test with reset, then P is correct.*

Summary: SQED Soundness and Completeness

Does $P \in Spec$ hold in M? \approx Is M self-consistent?

- If M not self-consistent then B ∈ M.
- Self-consistency covers bug B.

No spurious cex

Summary: SQED Soundness and Completeness

Does $P \in Spec$ hold in M? \approx Is M self-consistent?

- If B ∈ M then M not self-consistent.
- Self-consistency covers bug B.

Conditional/full Completeness

Future Work

Leveraging QED test extensions:

- Soft/hard reset not yet applied in practice.
- Design-for-verification approach.

Formal model refinements:

- Instruction pipelines, multiprocessor systems.
- Deadlock detection.
- Symbolic starting states.

Thank you for your attention!