A Theoretical Framework for Symbolic Quick Error Detection

Florian Lonsing
Subhasish Mitra
Clark Barrett

Paper published at Formal Methods in Computer-Aided Design (FMCAD) 2020 Preprint: https://arxiv.org/abs/2006.05449

Context: Pre-Silicon Verification

Electronic Design Automation (EDA)

Design

 (HDL)

- Model checking vs. non-formal simulation or testing.

Context: Pre-Silicon Verification

Electronic Design Automation (EDA)

Design

 (HDL)

- Model checking vs. non-formal simulation or testing.

Soundness of Bug-Finding

Formal Spec

Does $\mathrm{P} \in$ Spec hold in M?

- If $P \in \operatorname{Spec}$ fails then $B \in M$.
- Property P covers bug B.

Soundness \approx
no spurious cex

Completeness of Bug-Finding

Formal Spec

Does $\mathrm{P} \in \operatorname{Spec}$ hold in M?

- If $B \in M$ then $P \in \operatorname{Spec}$ fails.
- Property P covers bug B.

Completeness \approx Spec covers all bugs

Completeness of Bug-Finding
Formal Spec

Model
Checker

Does $\mathrm{P} \in \operatorname{Spec}$ hold in M?

- "Have I written enough properties?" [Katz et al. CHARME'99].
- Challenge: making Spec complete.

Completeness of Bug-Finding
Formal Spec

Model
 Checker

Does $\mathrm{P} \in$ Spec hold in M?

- Spec: manual writing of implementation-specific properties.

Completeness of Bug-Finding

Formal Spec'

Does $\mathrm{P} \in$ Spec $^{\prime}$ hold in M'?

- Spec: manual writing of implementation-specific properties.
- Model/design changes \rightarrow Spec to be adapted (manually).

Completeness of Bug-Finding

Formal Spec'

M^{\prime} $\mathrm{BO}^{\prime}, \mathrm{B1} 1^{\prime},$.

- Spec: manual writing of implementation-specific properties.
- Model/design changes \rightarrow Spec to be adapted (manually).
- Completeness depending on Spec.

Symbolic Quick Error Detection (SQED)

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).

Symbolic Quick Error Detection (SQED)

- No need for Spec or implementation-specific properties.
- Leverages bounded model checking (BMC).
- Self-consistency: universal property, no manual writing.

SQED: Industrial Strength

INFINEON case study: automotive IP versions [Singh et al DATE'19]

Bug detection

Traditional verification:
 (Constrained) random simulation, directed tests, formal.

Our Contributions: SQED Formal Proofs

Bounded Model Checker

\longleftarrow

Does $\mathrm{P} \in \operatorname{Spec}$ hold in M ? \approx Is M self-consistent?

1. Soundness: no spurious cex.
2. (Conditional) completeness: all bugs covered (BMC depth).
3. Formal framework: abstract processor model.

Self-Consistency

- Function f : equivalent inputs \rightarrow equivalent outputs.
- Functional congruence property:

$$
\forall x, x^{\prime}: x=x^{\prime} \rightarrow f(x)=f\left(x^{\prime}\right)
$$

Self-Consistency

- Processor Design M:
$i_{1}, i_{2}, \ldots, i_{n}+$ inputs (regs/mem)
$i_{1}{ }^{\prime}, i_{2}{ }^{\prime}, \ldots, i_{n}{ }^{\prime}+$ inputs' (regs/mem)

outputs (regs/mem)
outputs' (regs/mem)

Self-Consistency

- Processor Design M:
$i_{1}, i_{2}, \ldots, i_{n}+$ inputs (regs/mem)
$i_{1}{ }^{\prime}, i_{2}{ }^{\prime}, \ldots, i_{n}{ }^{\prime}+$ inputs' (regs/mem)

HW designs have complex internal state (pipeline,...).

Formal Model of Processors and SQED

- State s_{0} : mapping from locations \mathcal{L} to values.
- (Non-)architectural parts of $s_{0}=\left(\mathrm{s}_{\mathrm{a}}, \mathrm{s}_{\mathrm{na}}\right)$.
- \mathcal{L} : regs. and mem. locations, value $s_{0}(l)=\mathrm{s}_{\mathrm{a}}(l)=v$.

Formal Model of Processors and SQED

- Instruction $i=\left(o p, l,\left(l^{\prime}, l^{\prime \prime}\right)\right)$, one-step execution.
- Opcode op, input locations ($l^{\prime}, l^{\prime \prime}$), output location l.
- Transition: $\mathrm{T}\left(s_{0}, i\right)=\mathrm{s}_{1}, s_{0}=\left(\mathrm{s}_{\mathrm{a}}, \mathrm{s}_{\mathrm{na}}\right), s_{1}=\left(\mathrm{s}_{\mathrm{a}}{ }^{\prime}, \mathrm{s}_{\mathrm{na}}{ }^{\prime}\right)$.

Formal Model of Processors and SQED

$$
\begin{aligned}
& \text { Example: register identifiers } \\
& \boldsymbol{\mathcal { L }}=\{0,1, \ldots, 31\} \\
& \boldsymbol{\mathcal { L }}_{\boldsymbol{O}}=\{0, \ldots, 15\} \\
& \boldsymbol{L}_{\boldsymbol{D}}=\{16, \ldots, 31\} \\
& \mathrm{L}_{\mathrm{D}}(l)=l+16
\end{aligned}
$$

- Partition of \mathcal{L} : original and duplicate locations $\mathcal{L}_{\boldsymbol{O}}, \boldsymbol{L}_{\boldsymbol{D}}$.
- Arbitrary, fixed bijective mapping $\mathrm{L}_{\mathrm{D}}: \boldsymbol{L}_{\boldsymbol{O}} \rightarrow \mathcal{L}_{\boldsymbol{D}}$.
- Self-consistency property based on mapping L_{D}.

Formal Model of Processors and SQED

Example:

$$
\begin{aligned}
i_{O} & =\left(\mathrm{ADD}, l_{12},\left(l_{4}, l_{8}\right)\right) \\
\mathrm{L}_{\mathrm{D}}(l) & =l+16 \\
i_{D} & =\left(\mathrm{ADD}, l_{28},\left(l_{20}, l_{24}\right)\right)
\end{aligned}
$$

- Original instruction $i_{O}=\left(o p, l,\left(l^{\prime}, l^{\prime \prime}\right)\right)$.
- Duplicate $i_{D}=\operatorname{Dup}\left(i_{O}\right)=\left(o p, \mathrm{~L}_{\mathrm{D}}(l), \mathrm{L}_{\mathrm{D}}\left(l^{\prime}, l^{\prime \prime}\right)\right)$.

Formal Model of Processors and SQED

- Original instruction $i_{o}=\left(o p, l,\left(l^{\prime}, l^{\prime \prime}\right)\right)$.
- Duplicate $i_{D}=\operatorname{Dup}\left(i_{o}\right)=\left(o p, \mathrm{~L}_{\mathrm{D}}(l), \mathrm{L}_{\mathrm{D}}\left(l^{\prime}, l^{\prime \prime}\right)\right)$.
- Original/duplicate i_{0} / i_{D} operates on $\mathcal{L}_{\boldsymbol{O}} / \mathcal{L}_{\boldsymbol{D}}$ only.

Formal Model of Processors and SQED

- Given L_{D}, state s_{0} QED-consistent $\leftrightarrow s_{0}\left(\mathcal{L}_{O}\right)=s_{0}\left(\mathcal{L}_{D}\right)$.
- Matching values at original/duplicate locations.

Formal Model of Processors and SQED

QEDcons $\left(s_{0}\right) \quad$ QEDcons $\left(s_{2}\right)$

$$
s_{0}\left(\mathcal{L}_{O}\right)=s_{0}\left(\mathcal{L}_{D}\right) \quad s_{0}\left(\mathcal{L}_{D}\right)=s_{1}\left(\mathcal{L}_{D}\right) \quad s_{2}\left(\mathcal{L}_{O}\right)=s_{2}\left(\mathcal{L}_{D}\right)
$$

- Given L_{D}, state s_{0} QED-consistent $\leftrightarrow s_{0}\left(\mathcal{L}_{O}\right)=s_{0}\left(\mathcal{L}_{D}\right)$.
- Matching values at original/duplicate locations.
- Correct execution of i_{O} / i_{D} preserves QED-consistency.

Formal Model of Processors and SQED

QEDcons $\left(s_{0}\right) \quad$ QEDcons $\left(s_{2 n}\right)$

$$
s_{0}\left(\mathcal{L}_{O}\right)=s_{0}\left(\mathcal{L}_{D}\right)
$$

$$
s_{2 n}\left(\mathcal{L}_{O}\right)=s_{2 n}\left(\mathcal{L}_{D}\right)
$$

- $\boldsymbol{i}_{O}=i_{O, 1}, \ldots, i_{O, n}$ and $\boldsymbol{i}_{D}=i_{D, 1}, \ldots, i_{D, n}$ with $\boldsymbol{i}_{D}=\operatorname{Dup}\left(\boldsymbol{i}_{O}\right)$.
- QED test: concatenation $\boldsymbol{i}=\boldsymbol{i}_{O}:: \boldsymbol{i}_{D}$ of $2 n$ instructions.
- Correct execution of i preserves QED-consistency.

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

$$
n=1
$$

Select n original instructions \boldsymbol{i}_{0}

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

$$
n=1
$$

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

$$
n=1
$$

Get n duplicate instructions

$$
\boldsymbol{i}_{D}=\operatorname{Dup}\left(\boldsymbol{i}_{O}\right) \text { using } L_{D}
$$

$$
\text { QED test } \boldsymbol{i}=\boldsymbol{i}_{O}:: \boldsymbol{i}_{D}
$$

Model: execute \boldsymbol{i} (length $2 n$) in QED-consistent initial state s_{0}

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

$$
n=1
$$

Get n duplicate instructions

$$
\boldsymbol{i}_{D}=\operatorname{Dup}\left(\boldsymbol{i}_{O}\right) \text { using } L_{D}
$$

$$
\text { QED test } \boldsymbol{i}=\boldsymbol{i}_{O}:: \boldsymbol{i}_{D}
$$

Model: execute \boldsymbol{i} (length $2 n$) in QED-consistent initial state s_{0}

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L}
and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

Counterexample \boldsymbol{i}

$$
n=1
$$

Select n original instructions \boldsymbol{i}_{O}

Get n duplicate instructions

$$
\boldsymbol{i}_{D}=\operatorname{Dup}\left(\boldsymbol{i}_{O}\right) \text { using } L_{D}
$$

$$
\text { QED test } \boldsymbol{i}=\boldsymbol{i}_{O}:: \boldsymbol{i}_{D}
$$

Using BMC in SQED

Select partition $\mathcal{L}_{O}, \mathcal{L}_{D}$ of \mathcal{L} and mapping $L_{D}: \mathcal{L}_{O} \rightarrow \mathcal{L}_{D}$

Counterexample \boldsymbol{i}

Continue using $\mathcal{L}_{O}, \mathcal{L}_{D}, L_{D}$?

Get n duplicate instructions

$$
\boldsymbol{i}_{D}=\operatorname{Dup}\left(\boldsymbol{i}_{O}\right) \text { using } L_{D}
$$

QED test $\boldsymbol{i}=\boldsymbol{i}_{O}:: \boldsymbol{i}_{D}$
Model: execute \boldsymbol{i} (length $2 n$) in QED-consistent initial state s_{0}

Abstract Specification Relation

$$
\begin{aligned}
& \forall s, s^{\prime} \in S, i \in I . \operatorname{Spec}\left(s, i, s^{\prime}\right) \leftrightarrow \forall l \in \mathcal{L} \\
& \left(l \neq \operatorname{LocOut}(i) \rightarrow s(l)=s^{\prime}(l)\right) \wedge \\
& \left(l=\operatorname{LocOut}(i) \rightarrow s^{\prime}(l)=\operatorname{Spec} O u t(i, s(\operatorname{LocIn}(i)))\right)
\end{aligned}
$$

- Transition T(s, $i)=s^{\prime}$

Abstract Specification Relation

$$
\begin{aligned}
& \forall s, s^{\prime} \in S, i \in I . \operatorname{Spec}\left(s, i, s^{\prime}\right) \leftrightarrow \forall l \in \mathcal{L} \\
& \left(l \neq \operatorname{LocOut}(i) \rightarrow s(l)=s^{\prime}(l)\right) \wedge \\
& \left(l=\operatorname{LocOut}(i) \rightarrow s^{\prime}(l)=\operatorname{Spec} O u t(i, s(\operatorname{LocIn}(i)))\right)
\end{aligned}
$$

- Transition $\mathrm{T}(\mathrm{s}, i)=\mathrm{s}^{\prime}$ according to Spec $\subseteq S \times I \times S$ iff:

Abstract Specification Relation

$$
\begin{aligned}
& \forall s, s^{\prime} \in S, i \in I . \operatorname{Spec}\left(s, i, s^{\prime}\right) \leftrightarrow \forall l \in \mathcal{L} \\
& \left(l \neq \operatorname{LocOut}(i) \rightarrow s(l)=s^{\prime}(l)\right) \wedge \\
& \left(l=\operatorname{LocOut}(i) \rightarrow s^{\prime}(l)=\operatorname{SpecOut}(i, s(\operatorname{LocIn}(i)))\right)
\end{aligned}
$$

- Transition $\mathrm{T}(\mathrm{s}, i)=\mathrm{s}^{\prime}$ according to Spec $\subseteq S \times I \times S$ iff:

1. all non-output locations unchanged, and

Abstract Specification Relation

$$
\begin{aligned}
& \forall s, s^{\prime} \in S, i \in I . \operatorname{Spec}\left(s, i, s^{\prime}\right) \leftrightarrow \forall l \in \mathcal{L} \\
& \left(l \neq \operatorname{LocOut}(i) \rightarrow s(l)=s^{\prime}(l)\right) \wedge \\
& \left(l=\operatorname{LocOut}(i) \rightarrow s^{\prime}(l)=\operatorname{Spec} O u t(i, s(\operatorname{LocIn}(i)))\right)
\end{aligned}
$$

- Transition $\mathrm{T}(\mathrm{s}, i)=\mathrm{s}^{\prime}$ according to Spec $\subseteq S \times I \times S$ iff:

1. all non-output locations unchanged, and
2. correct output produced for given input values.

- Output specification: SpecOut: $I \times \mathcal{V}^{2} \rightarrow \mathcal{V}$.

Abstract Specification Relation

$$
\begin{aligned}
& \forall s, s^{\prime} \in S, i \in I . \operatorname{Spec}\left(s, i, s^{\prime}\right) \leftrightarrow \forall l \in \mathcal{L} \\
& \left(l \neq \operatorname{LocOut}(i) \rightarrow s(l)=s^{\prime}(l)\right) \wedge \\
& \left(l=\operatorname{LocOut}(i) \rightarrow s^{\prime}(l)=\operatorname{Spec} O u t(i, s(\operatorname{LocIn}(i)))\right)
\end{aligned}
$$

- Transition $\mathrm{T}(\mathrm{s}, i)=\mathrm{s}^{\prime}$ according to Spec $\subseteq S \times I \times S$ iff:

1. all non-output locations unchanged, and
2. correct output produced for given input values.

- Output specification: SpecOut: $I \times \mathcal{V}^{2} \rightarrow \mathcal{V}$.
- Abstract spec needed only for theory, not practice.

Bugs and Processor Correctness

Processor P is correct wrt. Spec:

- $\forall s \in S, i \in I . \operatorname{reach}(s) \rightarrow \operatorname{Spec}(s, i, T(s, i))$.
- All instructions execute correctly in all reachable states.

Bug:

- Instruction i_{b} and set $S_{b} \subseteq S$ of bug-triggering states.
- $S_{b}=\left\{s \in S \mid \operatorname{reach}(s) \wedge \sim \operatorname{Spec}\left(s, i_{b}, T\left(s, i_{b}\right)\right)\right\}$

Bug Triggering

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in \operatorname{Init}, i \in I . \operatorname{Spec}(s, i, T(s, i))$.
- All instructions execute correctly in all initial states Init.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in \operatorname{Init}, i \in I . \operatorname{Spec}(s, i, T(s, i))$.
- All instructions execute correctly in all initial states Init.

Single-instruction (SI) bug:

- $\exists s \in \operatorname{Init}, i \in I$. $\sim \operatorname{Spec}(s, i, T(s, i)$).
- No setup sequence, well-studied approaches to checking.

Single-Instruction Bugs and Correctness

Processor P is single-instruction (SI) correct wrt. Spec:

- $\forall s \in \operatorname{Init}, i \in I . \operatorname{Spec}(s, i, T(s, i))$.
- All instructions execute correctly in all initial states Init.

Single-instruction (SI) bug:

- $\exists s \in \operatorname{Init}, i \in I$. $\sim \operatorname{Spec}(s, i, T(s, i)$).
- No setup sequence, well-studied approaches to checking.

Assumption: P is SI -correct.

Soundness of SQED

$$
Q E D \operatorname{cons}\left(s_{0}\right) \Rightarrow Q E D \operatorname{cons}\left(s_{2 n}\right) ?
$$

Initial

\boldsymbol{i}_{D}
QED test $\boldsymbol{i}=\boldsymbol{i}_{o}:: \boldsymbol{i}_{D}$

Soundness of SQED

Theorem: if $\sim Q E D$ cons $\left(s_{2 n}\right)$ then processor P has a bug.

Initial states

\boldsymbol{i}_{D}
QED test $\boldsymbol{i}=\boldsymbol{i}_{o}:: \boldsymbol{i}_{D}$

Towards Completeness: Bug-Specific QED Test

$Q E D \operatorname{cons}\left(s_{0}\right)$

Initial state
QED test $\boldsymbol{i}=\left(i_{0,1}, \ldots, i_{0, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- Flexibility in choosing L_{D}.
- QED-consistent initial state s_{0}.

Towards Completeness: Bug-Specific QED Test

$Q E D \operatorname{cons}\left(s_{0}\right)$

Initial state
QED test $\boldsymbol{i}=\left(i_{0,1}, \ldots, i_{0, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- QED-consistent initial state s_{0}.
- Let $i_{b}=\operatorname{Dup}\left(i_{0,1}\right): i_{0,1}$ meets Spec due to SI-correctness.

Towards Completeness: Bug-Specific QED Test

QEDcons $\left(s_{0}\right)$

QED test $\boldsymbol{i}=\left(i_{0,1}, \ldots, i_{0, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- Setup sequence $i_{0,1}, \ldots, i_{O, n}$ to reach triggering state $s_{n} \in S_{b}$.

Towards Completeness: Bug-Specific QED Test

$Q E D \operatorname{cons}\left(s_{0}\right)$

Initial state
Setup sequence
QED test $\boldsymbol{i}=\left(i_{0,1}, \ldots, i_{0, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- Setup sequence $i_{0,1}, \ldots, i_{0, n}$ to reach triggering state $s_{n} \in S_{b}$.
- Bug instruction $i_{b}=\operatorname{Dup}\left(i_{0,1}\right)$ fails in s_{n}.

Towards Completeness: Bug-Specific QED Test

QED test $\boldsymbol{i}=\left(i_{0,1}, \ldots, i_{0, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- E.g. wrong value at output location l of i_{b} in s_{n+1}.
- Correct value at original output location l^{\prime} of $i_{0,1}$ in s_{1}.

Towards Completeness: Bug-Specific QED Test

QEDcons $\left(s_{0}\right)$

$\sim Q E D \operatorname{cons}\left(s_{2}\right)$

\mathcal{L}_{0}	$i_{0,1}$	$\mathcal{L}_{\boldsymbol{O}}{ }^{l^{\prime}}$
$\mathcal{L}_{\text {D }}$	S_{0}	$\mathcal{L}_{\boldsymbol{D}}$

Initial state
Setup sequence
QED test $\boldsymbol{i}=\left(i_{O, 1}, \ldots, i_{O, n}\right)::\left(i_{D, 1}, \ldots, i_{D, n}\right)$ for some L_{D}.

- Mismatching values at locations l and l^{\prime} in $s_{2 n}$.
- Final state $s_{2 n}$ QED-inconsistent.

Conditional Completeness

Theorem: if a bug-specific QED test i exists, then \boldsymbol{i} fails.

Extensions: Reset Instructions

Reachable states

Soft-reset instruction i_{r} :

- $s=\left(s_{a}, s_{n a}\right), s^{\prime}=\left(s_{a}{ }^{\prime}, s_{n a}{ }^{\prime}\right)$.
- Keep arch. part: $s_{a}=s_{a}{ }^{\prime}$.

Extensions: Reset Instructions

Reachable states

Hard-reset instruction $i_{r}\left(s^{\prime}\right)$:

- $s=\left(s_{a}, s_{n a}\right), s^{\prime}=\left(s_{a}{ }^{\prime}, s_{n a}{ }^{\prime}\right)$.
- Change s_{a} and $s_{n a}$ arbitrarily.

Extensions: QED Test with Reset

Setup sequence

- Bug set up and triggered by $i_{1}, \ldots, i_{k}=i_{b}$.
- No duplication: check states after $i_{k}=i_{b}$ with(out) reset.

Extensions: QED Test with Reset

Setup sequence

- Bug set up and triggered by $i_{1}, \ldots, i_{k}=i_{b}$.
- Execute $i_{1}, \ldots, i_{k}=i_{b}$ from $s_{I} \in$ Init: wrong value in state s.

Extensions: QED Test with Reset

- Execute hard reset in state s, get back to s_{I}.
- Idea: execute $i_{1}, \ldots, i_{k}=i_{b}$ again with soft reset before i_{b}.

Extensions: QED Test with Reset

- Execute soft reset in bug-triggering state before $i_{k}=i_{b}$.
- Make use of SI correctness.

Extensions: QED Test with Reset

- Bug instruction $i_{k}=i_{b}$ executes correctly.
- Compare s and final state s^{\prime}.

Extensions: QED Test with Reset

- QED test with reset fails iff $s(l) \neq s^{\prime}(l)$ for a location l.

Extensions: QED Test with Reset

Setup sequence

Theorem (full completeness): if P is $S I$ correct and has no failing QED test with reset, then P is correct.

Summary: SQED Soundness and Completeness

Does $\mathrm{P} \in$ Spec hold in M ? \approx Is M self-consistent?

- If M not self-consistent then $B \in M$.
- Self-consistency covers bug B.

No spurious cex

Summary: SQED Soundness and Completeness

Bounded Model Checker

1

- If $B \in M$ then M not self-consistent.
- Self-consistency covers bug B.

Conditional/full
Completeness

Future Work

Leveraging QED test extensions:

- Soft/hard reset not yet applied in practice.
- Design-for-verification approach.

Formal model refinements:

- Instruction pipelines, multiprocessor systems.
- Deadlock detection.
- Symbolic starting states.

Thank you for your attention!

