
Advances in QBF Reasoning

Florian Lonsing

Knowledge-Based Systems Group, Vienna University of Technology, Austria
http://www.kr.tuwien.ac.at/staff/lonsing/

SAT/SMT/AR Summer School
June 22-25 2016, Lisbon, Portugal

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 1 / 46

http://www.kr.tuwien.ac.at/staff/lonsing/

Introduction (1)

Propositional Logic (SAT):
Modelling NP-complete problems in formal verification, AI, . . .
Success story of SAT solving.

Quantified Boolean Formulas (QBF):
Existential and universal quantification of propositional variables.
Q1x1, . . . ,Qnxn. φ, where Qi ∈ {∀,∃} and φ a CNF.
PSPACE-complete: potentially more succinct encodings than SAT.

Practice:
Despite intractability, solvers often work well on structured problems.
Applications to presumably harder problems, e.g. NEXPTIME.
SAT/QBF solvers are tightly integrated in application workflows.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 1 / 46

Introduction (2): QBF-Related Quotes from the Literature

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan
Zhu: Symbolic Model Checking without BDDs. TACAS 1999: 193-207.

Unfortunately, we do not know of an efficient decision procedure
for QBF.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 2 / 46

Introduction (2): QBF-Related Quotes from the Literature

[DHK05] Nachum Dershowitz, Ziyad Hanna, Jacob Katz: Bounded Model
Checking with QBF. SAT 2005: 408-414.

We found that modern state-of-the-art general-purpose QBF
solvers are still unable to handle the real-life instances of BMC
problems in an efficient manner.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 2 / 46

Introduction (2): QBF-Related Quotes from the Literature

[Rin07] Jussi Rintanen: Asymptotically Optimal Encodings of Conformant
Planning in QBF. AAAI 2007: 1045-1050.

We believe that the future successes of QBF in many
applications is strongly dependent on the development of better
algorithms for evaluating QBF.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 2 / 46

Introduction (2): QBF-Related Quotes from the Literature

[MVB10] Hratch Mangassarian, Andreas G. Veneris, Marco Benedetti:
Robust QBF Encodings for Sequential Circuits with Applications to
Verification, Debug, and Test. IEEE Trans. Computers 59(7): 981-994
(2010).

Admittedly, the theory and results of this paper emphasize the
need for further research in QBF solvers [. . .] Since the first
complete QBF solver was presented decades after the first
complete engine to solve SAT, research in this field remains at its
infancy.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 2 / 46

Introduction (3): Progress in QBF Research

The Beginning of QBF Solving:
1998: DPLL for QBF [CGS98].
2002: CDCL for QBF [GNT02, Let02, ZM02a].
2002: expansion of variables [AB02].

⇒ compared to SAT, QBF still is a young field of research!

Increased Interest in QBF:
QBF proof systems: theoretical frameworks of solving techniques.
CDCL and expansion as orthogonal approaches to QBF solving.
QBF solving by counterexample guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 3 / 46

Introduction (4): Motivating QBF Applications

Synthesis and Realizability of Distributed Systems:

[GT14] Adria Gascón, Ashish Tiwari: A Synthesized Algorithm for
Interactive Consistency. NASA Formal Methods 2014: 270-284.

[FT15] Bernd Finkbeiner, Leander Tentrup: Detecting Unrealizability of
Distributed Fault-tolerant Systems. Logical Methods in Computer Science
11(3) (2015).

Florian Lonsing (TU Wien) Advances in QBF Reasoning 4 / 46

Introduction (4): Motivating QBF Applications

Solving dependency quantified boolean formulas (NEXPTIME):

[FT14] Bernd Finkbeiner, Leander Tentrup: Fast DQBF Refutation. SAT
2014: 243-251.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 4 / 46

Introduction (4): Motivating QBF Applications

Formal verification and synthesis:

[HSM+14] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong,
Husam Abu-Haimed: Dominant Controllability Check Using QBF-Solver
and Netlist Optimizer. SAT 2014: 227-242.

[CHR16] Chih-Hong Cheng, Yassine Hamza, Harald Ruess: Structural
Synthesis for GXW Specifications. To appear in the proceedings of CAV
2016.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 4 / 46

Outline

Preliminaries:
QBF syntax and semantics.

QBF Proof Systems:
Results in QBF proof complexity.
Understanding and analyzing techniques implemented in QBF solvers.

A Typical QBF Workflow:
How to encode problems as a QBF?
How to simplify and solve a QBF?
How to obtain the solution to a problem from a solved QBF?

Outlook and Future Work:
Open problems and possible research directions.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 5 / 46

Preliminaries

Florian Lonsing (TU Wien) Advances in QBF Reasoning 6 / 46

Syntax (1)

QBFs as Quantified Circuits:
> and ⊥ are QBFs.
For propositional variables Vars, (x) where x ∈ Vars is a QBF.
If ψ is a QBF then ¬(ψ) is a QBF.
If ψ1 and ψ2 are QBFs then (ψ1 ◦ ψ2) is a QBF, ◦ ∈ {∧,∨,→,↔}.
If ψ is a QBF and x ∈ Vars(ψ), then ∀x .(ψ) and ∃x .(ψ) are QBFs.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 6 / 46

Syntax (1)

QBFs in Prenex CNF: ψ := Q̂.φ
Quantifier prefix Q̂ = Q1B1 . . .QnBn, Qi ∈ {∀, ∃}, Qi 6= Qj ,
Bi ⊆ Vars, (Bi ∩ Bj) = ∅.
Linear ordering of variables: xi < xj iff xi ∈ Bi , xj ∈ Bj , and i < j .
Quantifier-free CNF φ over propositional variables xi .
Assume: φ does not contain free variables, all xi in Q̂ appear in φ.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 6 / 46

Syntax (2)

Example (QDIMACS Format)
∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Extension of DIMACS format used in SAT solving.
Literals of variables encoded as signed integers.
One quantifier block per line, terminated by zero.
“a” labels ∀, “e” labels ∃.
One clause per line, terminated by zero.

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

QDIMACS format: http://www.qbflib.org/qdimacs.html

Florian Lonsing (TU Wien) Advances in QBF Reasoning 7 / 46

 http://www.qbflib.org/qdimacs.html

Semantics (1)

Recursive Definition:
Assume that a QBF does not contain free variables.
The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.
The QBF ¬(ψ) is satisfiable iff the QBF ψ is unsatisfiable.
The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.
The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.
The QBF ∀x .(ψ) is satisfiable iff ψ[¬x] and ψ[x] are satisfiable.
The QBF ψ[¬x] (ψ[x]) results from ψ by replacing x in ψ by ⊥ (>).
The QBF ∃x .(ψ) is satisfiable iff ψ[¬x] or ψ[x] is satisfiable.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 8 / 46

Semantics (1)

Game-Based View:
Player P∃ (P∀) assigns existential (universal) variables.
Goal: P∃ (P∀) wants to satisfy (falsify) the formula.
Players pick variables from left to right wrt. quantifier ordering.
QBF ψ is satisfiable (unsatisfiable) iff P∃ (P∀) has a winning strategy.
Winning strategy: P∃ (P∀) can satisfy (falsify) the formula regardless
of opponent’s choice of assignments.
Close relation between winning strategies and QBF certificates.

Example
ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄).

P∃ wins by setting x to the same value as u.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 8 / 46

Semantics (2)

Definition (Skolem/Herbrand Function)
Let ψ be a PCNF, x (y) a universal (existential) variable.

Let Dψ(v) := {w ∈ ψ | q(v) 6= q(w) and w < v}, q(v) ∈ {∀, ∃}.
Skolem function fy (x1, . . . , xk) of y : Dψ(y) = {x1, . . . , xk}.
Herbrand function fx (y1, . . . , yk) of x : Dψ(x) = {y1, . . . , yk}.

Definition (Skolem Function Model)
A PCNF ψ with existential variables y1, . . . , ym is satisfiable iff
ψ[y1/fy1(Dψ(y1)), . . . , ym/fym(Dψ(ym))] is satisfiable.

Definition (Herbrand Function Countermodel)
A PCNF ψ with universal variables x1, . . . , xm is unsatisfiable iff
ψ[x1/fx1(Dψ(x1)), . . . , xm/fxm(Dψ(xm))] is unsatisfiable.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 9 / 46

Semantics (3)

Example (Skolem Function Model)
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

Skolem function fx = ⊥ of x with Dψ(x) = ∅.
Skolem function fy (u) = ū of y with Dψ(y) = {u}.
ψ[x/fx , y/fy (u)] = ∀u.(⊥ ∨ u ∨ ū) ∧ (⊥ ∨ ū ∨ u)

Satisfiable: ψ[x/fx , y/fy (u)] = >

Example (Herbrand Function Countermodel)
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

Herbrand function fu(x) = (x) of u with Dψ(u) = {x}.
ψ[u/fu(x)] = ∃x , y .(x ∨ x ∨ y)∧ (x ∨ x ∨ ȳ)∧ (x̄ ∨ x̄ ∨ y)∧ (x̄ ∨ x̄ ∨ ȳ)

Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 10 / 46

QBF Proof Systems

Florian Lonsing (TU Wien) Advances in QBF Reasoning 11 / 46

Proof Systems (1): QBF Resolution

Definition (Q-Resolution Calculus QRES, c.f. [BKF95])

Let ψ = Q̂.φ be a PCNF and C ,C1,C2 clauses.

C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ (init)

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃ (red)

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃ (res)

Axiom init, universal reduction red , resolution res.
PCNF ψ is unsatisfiable iff empty clause ∅ can be derived by QRES.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 11 / 46

Proof Systems (2): QBF Resolution

Example
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

∅

(x)

(x ∨u)

(x ∨u∨y)

(x ∨u∨y ∨v)

C1 C3

(x ∨u∨ȳ)

(x ∨u∨ȳ ∨v̄)

C2 C3

(x̄)

(x̄ ∨u)

(x̄ ∨u∨y)

(x̄ ∨u∨y ∨v)

C1 C4

(x̄ ∨u∨ȳ)

(x̄ ∨u∨ȳ ∨v̄)

C2 C4

Florian Lonsing (TU Wien) Advances in QBF Reasoning 12 / 46

Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(v ∨ v̄ ∨ z)

C1 C2

Long-Distance Q-Resolution: [ZM02a, BJ12]
Like Q-resolution, but allow certain tautological resolvents.
Tautological resolvent C with {x , x̄} ⊆ C :

q(x) = ∀
Existential pivot p: p < x .

Exponentially stronger than traditional Q-resolution.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 13 / 46

Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

QU-Resolution: [VG12]
Like Q-resolution but additionally allow universal variables as pivots.
Exponentially stronger than traditional Q-resolution.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 13 / 46

Proof Systems (3): QBF Resolution

Example (continued)
ψ = ∃x∀u∃y∀v∃z .
(y∨v∨z)︸ ︷︷ ︸

C1

∧ (ȳ∨v̄∨z)︸ ︷︷ ︸
C2

∧ (x∨u∨z̄)︸ ︷︷ ︸
C3

∧ (x̄∨u∨z̄)︸ ︷︷ ︸
C4

∧ (x̄∨ū∨z̄)︸ ︷︷ ︸
C5

(x̄ ∨ z̄)

C4 C5

Further Variants: [BWJ14]
Combinations of QU- and long-distance Q-resolution.
Existential and universal pivots, tautologies due to universal variables.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 13 / 46

Proof Systems (4): Expansion and Instantiation

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh z in copy of CNF.
ψ = ∃x , y , z . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧ (x̄ ∨ z) ∧ (x ∨ z̄) ∧ (z)︸ ︷︷ ︸
u replaced by >, y replaced by z

Obtain (x̄) from (x̄ ∨ y) and (ȳ), (x) from (x ∨ z̄) and (z).

Universal Expansion: cf. [AB02, Bie04, JKMSC16]
Idea: eliminate all universal variables, cf. Shannon expansion [Sha49].
Finally, apply propositional resolution (no universal reduction).
If x innermost: replace Q̂∀x .φ by Q̂.(φ[x/>] ∧ φ[x/>]).
Otherwise, duplicate existential variables inner to x [Bie04, BK07].
Based on CNF, NNF, and-inverter graphs [AB02, LB08, PS09].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 14 / 46

Proof Systems (5): Expansion and Instantiation

Definition (∀Exp+RES [JM13, BCJ14, JM15a])

Axiom: C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ

Instantiation: C
{lAl | l ∈ C , q(l) = ∃}

Complete assignment A to universal variables s.t. literals in C
falsified, Al ⊆ A restricted to universal variables u with u < l .

Resolution: C1 ∪ {pA} C2 ∪ {p̄A}
C1 ∪ C2

for all x ∈ Q̂:
{x , x̄} 6⊆ (C1 ∪C2)

First, instantiate (i.e. replace) all universal variables by constants.
Existential literals in a clause are annotated by partial assignments.
Finally, resolve on existential literals with matching annotations.
Instantiation and annotation mimics universal expansion.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 15 / 46

Proof Systems (6): Expansion and Instantiation

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Complete assignments: A = {ū} and A′ = {u}.
Instantiate: (x̄ ∨ y ū) ∧ (x ∨ ȳu) ∧ (yu) ∧ (ȳ ū)

Note: cannot resolve (yu) and (ȳ ū) due to mismatching annotations.
Obtain (x) from (x ∨ ȳu) and (yu), (x̄) from (x̄ ∨ y ū) and (ȳ ū).

Different Power of QBF Proof Systems:
Q-resolution and expansion/instantiation are incomparable [BCJ15].
Interpreting QBFs as first-order logic formulas [SLB12, Egl16].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 16 / 46

Typical QBF Workflow

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

Which problems can be modelled as a QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to encode problems as a QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to simplify QBF encodings?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to solve a QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to obtain the solution to a problem from a solved QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 17 / 46

Problems (1)

Definition (Polynomial-Time Hierarchy, cf. [BB09, MS72])

For k ≥ 0: ΣP
0 := ΠP

0 := P, ΣP
k+1 := NPΣP

k , ΠP
k+1 := coΣP

k+1

ΣP
k+1: problems decidable in non-det. poly-time with ΣP

k oracle.
ΠP
k+1: class of problems whose complement is in ΣP

k+1.
ΣP
1 = NP, ΠP

1 = coNP, every ΣP
i , ΠP

i contained in PSPACE [Sto76].

Definition (Prefix Type [BB09])
A propositional formula φ has prefix type Σ0 = Π0. Given a QBF with
prefix type Σn (Πn), the QBF ∀B.φ (∃B.φ) has prefix type Πn+1 (Σn+1).

Proposition (cf. [BB09])
For k ≥ 1, the satisfiability problem of a QBF ψ with prefix type Σk (Πk)
is ΣP

k -complete (ΠP
k -complete).

Florian Lonsing (TU Wien) Advances in QBF Reasoning 18 / 46

Problems (2)

Class Prefix Problems (e.g.)
ΣP
1 = NP ∃B1.φ SAT, checking Herbrand function

countermodels of QBFs [BJ12]

ΣP
2 ∃B1∀B2.φ MUS membership testing [JS11b,

Lib05], encodings of conformant
planning [Rin07], ASP-related
problems [FR05], abstract argu-
mentation [CDG+15]

ΠP
1 = co-NP ∀B1.φ Checking Skolem function models

of QBFs [BJ12]

PSPACE Q1B1 . . .QnBn.φ
(n depending on
problem instance)

LTL model checking [SC85], NFA
language inclusion, games [Sch78]

Florian Lonsing (TU Wien) Advances in QBF Reasoning 19 / 46

Problems (3): Using Universal Quantifiers

Example (Bounded Model Checking (BMC) [BCCZ99])
System S, states of S as a state graph, invariant P.
Goal: search for a counterexample of P of bounded length.

SAT Encoding:
Initial state predicate I(s), transition relation T (s, s ′).
“Bad state” predicate B(s): s is a state where P is violated.
Error trace of length k: I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ B(sk).

QBF Encoding: [BM08, JB07]
∃s0, . . . , sk∀x , x ′.
I(s0) ∧ B(sk) ∧ ([

∨k−1
i=0 ((x = si) ∧ (x ′ = si+1))]→ T (x , x ′)).

Only one copy of T in contrast to k copies in SAT encoding.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 20 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How can problems be encoded as a QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 21 / 46

Encodings (1)

QCIR: Quantified CIRcuit
Format for QBFs in non-prenex non-CNF.
Conversion tools, e.g., part of GhostQ solver [Gho16, KSGC10].

1 Introduction

This document defines the input format QCIRfor tools processing or producing
quantified Boolean formulas (QBF). The QCIRformat is based on the ISCAS-89
format. QCIRallows the representation of quantified circuits in prenex as well
as in non-prenex form. The QCIRformat is designed for being easy to use in
applications on the one hand and for being easy to be implemented in solvers
and related tools on the other hand. In order to satisfy both requirements, the
standard defines a general version providing much freedom to the user and a
version defining cleansed formulas which are easier to process. This document
first gives a concise definition of the structure of a QCIRformula followed by a
textual description of implementation details which cannot be covered in terms
of a grammar. Then restrictions to the cleansed format are introduced and
examples are provided. Finally, this document concludes with a list of features
to be included in the future.

2 Format Specification

2.1 Syntax

The following BNF grammar specifies the structure of a formula represented in
QCIR (Quantified CIRcuit).

qcir-file ::= format-id qblock-stmt output-stmt (gate-stmt nl)
∗

format-id ::= #QCIR-G14 [integer] nl

qblock-stmt ::= [free(var-list)nl] qblock-quant∗

qblock-quant ::= quant(var-list)nl

var-list ::= (var,)∗ var

lit-list ::= (lit,)∗ lit | ε
output-stmt ::= output(lit)nl

gate-stmt ::= gvar = ngate type(lit-list)

| gvar = xor(lit, lit)

| gvar = ite(lit, lit, lit)

| gvar = quant(var-list; lit)

quant ::= exists | forall
var ::= (A string of ASCII letters, digits, and underscores)

gvar ::= (A string of ASCII letters, digits, and underscores)

nl ::= newline

lit ::= var | -var | gvar | -gvar

ngate type ::= and | or

2

#QCIR-G14

forall(v1)

exists(v2, v3)

output(g3)

g1 = and(v1, v2)

g2 = and(-v1, -v2, v3)

g3 = or(g1, g2)

∀v1.∃v2.∃v3. (v1 ∧ v2)︸ ︷︷ ︸
g1

∨ (¬v1 ∧ ¬v2 ∧ v3)︸ ︷︷ ︸
g2︸ ︷︷ ︸

g3

As seen above, a file in QCIR format consists of four parts: (1) format identi-
fication, (2) a quantifier prefix, (3) identification of the circuit output, and (4)
gate definitions. In general, a formula in QCIR format has the following form:

3.2 Formula in Non-Prenex Form

A formula in non-prenex form looks as follows:

#QCIR-G14

forall(z)

output(g3)

g1 = and(x1, x2, z)

g2 = exists(x1, x2; g1)

g3 = or(z, g2)

∀z.

g3︷ ︸︸ ︷
z ∨ ∃x1.∃x2. (x1 ∧ x2 ∧ z)︸ ︷︷ ︸

g1︸ ︷︷ ︸
g2

3.3 Formula in Cleansed Form

The formula from the previous section has the following cleansed form:
#QCIR-G14 6

forall(3)

output(4)

5 = and(1, 2, 3)

6 = exists(1, 2; 5)

4 = or(3, 6)

4 Beyond this Standard

This is a collection of topics to be handled in later versions of this document.

5

From [QCI14]: http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

Florian Lonsing (TU Wien) Advances in QBF Reasoning 21 / 46

http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

Encodings (2)

Definition (Prenexing, cf. [AB02, Egl94, EST+03, ETW02, GNT07])
(Qx . φ) ◦ ψ ≡ Qx . (φ ◦ ψ), ψ a QBF, Q ∈ {∀,∃}, ◦ ∈ {∧,∨}, x 6∈ Var(ψ).

Definition (CNF transformation, cf. [Tse68, NW01, PG86])
Given a prenex QBF ψ := Q̂.φ, subformulas ψi of ψ.
ψi = (ψi ,l ◦ ψi ,r), ◦ ∈ {∨,∧,→,↔,⊗}.
Add equivalences ti ↔ (ψi ,l ◦ ψi ,r), fresh variable ti .
Convert each ti ↔ (ψi ,l ◦ ψi ,r) to CNF depending on ◦.
Resulting PCNF ψ′: satisfiability-equivalent to ψ, size linear in |ψ|.
Safe: quantify each ti innermost [GMN09]: ψ := Q̂∃ti .φ.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 22 / 46

Encodings (3)

Definition (QBF Extension Rule, cf. [Tse68, JBS+07, BCJ16])
Let ψ := Q1x1 . . .Qixi . . .Qjxj . . .Qnxn.φ be a PCNF.
Consider variables xi , xj with xi ≤ xj in ψ, fresh existential variable v .
Add definition v ↔ (x̄i ∨ x̄j) in CNF: (v̄ ∨ x̄i ∨ x̄j)∧ (v ∨ xi)∧ (v ∨ xj).
Strong variant: quantify v after xj , Q1x1 . . .Qixi . . .Qjxj∃v . . .Qnxn.
Weak variant: quantify v innermost, Q1x1 . . .Qixi . . .Qjxj . . .Qnxn∃v .

Proposition (cf. [JBS+07, BCJ16])
Q-resolution with the strong extension rule is exponentially more powerful
than with the weak extension rule with respect to lengths of refutations.

⇒ “bad” placement of Tseitin variables in encoding phase may have
negative impact on solving in a later stage.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 23 / 46

Encodings (4): QParity

Definition (QParity Function [BCJ15])
QParityn := ∃x1, . . . , xn∀y . XOR(XOR(. . .XOR(x1, x2), . . . , xn), y).

CNF φ of QParityn by
Tseitin translation:

(t1 ↔ XOR(x1, x2)) ∧∧
1<i<n

(ti ↔ XOR(ti−1, xi+1)) ∧

(tn ↔ XOR(tn−1, y)) ∧ (tn)

Prefix by weak extension rule : Q̂W := ∃x1, . . . , xn∀y∃t1, . . . , tn
Prefix by strong extension rule: Q̂S := ∃x1, . . . , xn∃t1, . . . , tn−1∀y∃tn

Proposition ([BCJ15, BCJ16])
The PCNF Q̂W .φ has only exponential Q-resolution refutations.
The PCNF Q̂S .φ has polynomial Q-resolution refutations.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 24 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How can QBF encodings be simplified?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 25 / 46

Preprocessing (1)

Preprocessing as Incomplete Solving:
Apply Q-resolution and expansion in restricted and bounded fashion.
E.g. Bloqqer [BLS11, HJL+15] and sQueezeBF[GMN10b].
Failed literal detection [LB11, VGWL12]: find necessary assignments.

Reconstructing Structure:
Recover non-CNF structure from Tseitin encodings [GB13, KSGC10].
Move definition variables in prefix outwards, e.g. QParity function.

Effect on Solver Performance: [LSVG16]
Iterative and incremental preprocessing may be powerful.
Preprocessing may blur formula structure and thus be harmful.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 25 / 46

Preprocessing (2)

Number Solved
Category/ Best Worst
Solvers Foot Foot
NO Bloqqer (solvers perform better without Bloqqer)
bGhostQ-CEGAR 142 93
GhostQ-CEGAR 142 93
GhostQ 122 84
sDual_Ooq 118 99
sDual_Ooq 105 89
WANT Bloqqer (solvers perform better with Bloqqer)
RAReQS 132 79
DepQBF-lazy-qpup 128 88
DepQBF 125 86
Hiqqer3 117 113
Qoq 93 65
QuBE 91 90
Nenofex 68 50

QBF Gallery 2013 [LSVG16]: QBFLIB set (276 formulas).
Solver performance with and without preprocessing by Bloqqer.
Preprocessing may be harmful to the performance of some solvers.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 26 / 46

Preprocessing (3): Prefix Ordering Matters

Definition (Blocking Literal, Blocked Clause [Kul99, BLS11, HJL+15])

Let ψ = Q̂.φ be a PCNF and C ∈ φ a clause.
blocking literal l : l ∈ C with q(l) = ∃ such that for all C ′ ∈ φ with
l̄ ∈ C ′, there exists l ′ with l ′ ≤ l such that {l ′, l̄ ′} ⊆ (C ∪ (C ′ \ {̄l})).
A clause C is blocked if it contains a blocking literal.
Removing blocked clauses preserves satisfiability.

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

No clause in ψ is blocked.
Informally, inspect all resolvents on potential blocking literals.
Prefix ordering has to be taken into account in QBF preprocessing.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 27 / 46

Solving (1)

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How can a QBF be solved?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 28 / 46

Solving (2): QCDCL

Result qcdcl (PCNF ψ)
Result R = UNDEF;
Assignment A = ∅;
while (true)

/* Simplify under A. */
(R,A) = qbcp(ψ,A);
if (R == UNDEF)

/* Decision making. */
A = assign_dec_var(ψ,A);

else
/* Backtracking. */
/* R == UNSAT/SAT */
B = analyze(R,A);
if (B == INVALID)

return R;
else

A = backtrack(B);

High-level flow similar to CDCL
for SAT.
Generate assignments A by
decision making and QBF-
specific BCP.
Decisions in prefix ordering.
Interpret formula ψ under A and
universal reduction.
A is conflicting: clause learning.
A is a CNF model: cube learning.
Asserting clauses and cubes for
backjumping.
QCDCL solvers, e.g., [LB10a,
GMN10a, KSGC10, ZM02b]

Florian Lonsing (TU Wien) Advances in QBF Reasoning 28 / 46

Solving (3): QCDCL

Definition (Unit Literal Detection [CGS98])
Given a QBF ψ, a clause C ∈ ψ is unit if C = (l) and q(l) = ∃.
Unit literal detection (UL) assigns var(l) to satisfy the unit clause
C = (l).
(If q(l) = ∀ then C is effectively empty by universal reduction.)

Definition (Pure Literal Detection [CGS98])
A literal l is pure in a QBF ψ if there are clauses which contain l but
no clauses which contain l̄ .
Pure literal detection (PL) assigns var(l) of an existential (universal)
pure literal l so that clauses are satisfied (not satisfied, i.e. shortened).

Florian Lonsing (TU Wien) Advances in QBF Reasoning 29 / 46

Solving (4): QCDCL

Definition (Boolean Constraint Propagation for QBF (QBCP))
Given a PCNF ψ and the empty assignment A = {}, i.e. ψ[A] = ψ.
1. Apply universal reduction (UR) to ψ[A].
2. Apply UL to ψ[A], record antecedent clauses C ∈ ψ like in CDCL.
3. Apply PL to ψ[A].
Add assignments found by UL and PL to A, repeat steps 1-3.
Stop if A does not change anymore or if ψ[A] = > or ψ[A] = ⊥.

Properties of QBCP:
Result: extended assignment A′ and simplified PCNF ψ′ = ψ[A′] by
UL, PL, and UR such that ψ ≡sat ψ

′.
QBCP can assign variables out of prefix ordering.
Construct implication graph like in BCP for SAT.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 30 / 46

Solving (5): QCDCL

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)

By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)

By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.

Conflict graph G :
x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 31 / 46

Solving (6): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Idea: start at ∅, select pivots in
reverse assignment ordering.
Resolve antecedents of x4, x3.
Q-resolution [BKF95] disallows
tautologies like (ȳ5 ∨ y5 ∨ x̄2)!
Pivot selection more complex
than in CDCL for SAT.

(ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 32 / 46

Solving (7): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Avoid tautologies: resolve on
UR-blocking existentials.
Select pivots: x4, x2, x3, x2.
Q-resolution derivation of a
learned clause (x̄1) is not
regular, i.e. resolve on
variables more than once. (x̄1)

(x̄1 ∨ y5 ∨ x̄2)

(x̄1 ∨ x̄3)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x̄1 ∨ x2)

(x3 ∨ y5 ∨ x̄2)

(x̄1 ∨ x2)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 33 / 46

Solving (8): QCDCL

Clause Learning by Traditional Q-Resolution [BKF95]:
Avoid tautologies by appropriate pivot selection [GNT06].
Derivation of a learned clause may be exponential [VG12].
Annotate nodes in conflict graph with intermediate resolvents,
resulting in tree-like (instead of linear) Q-resolution derivations of
learned clauses [LEG13].

Clause Learning by Long Distance Q-Resolution [ZM02a, BJ12]:
First implementation in quaffle:
https://www.princeton.edu/~chaff/quaffle.html.
Select pivots in strict reverse assignment ordering.
Every resolution step is a valid LDQ-resolution step [ZM02a, ELW13].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 34 / 46

https://www.princeton.edu/~chaff/quaffle.html

Solving (9): QCDCL

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Conflict graph G :

x1 x2 x3 ∅

x4

Antecedent clauses:
x2 : (x̄1 ∨ x2)
x3 : (x3 ∨ y5 ∨ x̄2)
x4 : (x4 ∨ ȳ5 ∨ x̄2)
∅ : (x̄3 ∨ x̄4)

Start at ∅, always select pivots
in reverse assignment ordering.
Resolve antecedents of x4, x3, x2.
Pivots obey order restriction of
LDQ-resolution.
Derivation of learned clause is
regular, size linear in |G |.

(x̄1)

(x̄1 ∨ x2) (ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 35 / 46

Solving (10): QCDCL for Satisfiable QBFs

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])
Let ψ = Q̂.φ be a PCNF.

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an assignment

with ψ[A] = >, i.e. every clause of ψ satisfied under A.

Cube Learning Dual to Clause Learning:
Cube C by model generation: v ∈ C (v̄ ∈ C) if v assigned to > (⊥).
C (also called cover set): implicant of CNF φ, i.e. C ⇒ φ.
Model generation is an axiom of QRES.
Q-resolution and existential reduction on cubes.
Learn asserting cubes similar to asserting clauses.
PCNF ψ is satisfiable iff the empty cube can be derived from ψ.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 36 / 46

Solving (11): QCDCL for Satisfiable QBFs

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
Resolve (x̄ ∧ ū) and (x̄ ∧ u) on universal u.
Reduce (x̄) to derive ∅.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 37 / 46

Solving (12): QCDCL for Satisfiable QBFs

QCDCL and Cube Learning in Practice:
PCNF ψ := Q̂. φ with quantifier prefix Q̂ and CNF φ.
Original clauses φ, learned clauses θ and cubes γ.
Properties: Q̂. φ ≡sat Q̂. (φ ∧ θ) and Q̂. φ ≡sat Q̂. (φ ∨ γ).

Problem: [RBM97, Let02]
Easy formula with exponential DNF (and exponential cube proofs):
ψ = ∀u1∃x1 . . . ∀un∃xn.

∧n
i=1[(ui ∨ x̄i) ∧ (ūi ∨ xi)]

Generalized Axioms: [LBB+15, LES16]
Generalize model generation (axiom) to derive shorter cubes C from
assignments A in QCDCL where ψ[A] is satisfiable.
In general, C 6⇒ φ.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 38 / 46

Solving (13): Lazy Expansion by CEGAR

Example ([CGJ+03, JS11a, JKMC12, JKMSC16])
Let ψ := ∃X∀Y. φ be a one-alternation QBF, φ a non-CNF formula.

ψ is satisfiable iff ψ′ :=
∧
y∈B|Y | φ[Y /y] is satisfiable.

ψ′: full expansion of ∀Y over all possible assignments y of Y .
Let U ⊆ B|Y | and Abs(ψ) :=

∧
y∈U φ[Y /y] be a partial expansion.

If abstraction Abs(ψ) is unsatisfiable, then ψ is unsatisfiable.
Otherwise, consider a model (candidate solution) x ∈ B|X | of Abs(ψ).
If x is also a model of the full expansion ψ′, then ψ is satisfiable.

x is a model of ψ′ iff ∀Y .φ[X/x] is satisfiable.
∀Y .φ[X/x] is satisfiable iff ∃Y .¬φ[X/x] is unsatisfiable.
Let y be a model of ∃Y .¬φ[X/x], if one exists (counterexample to x).

Otherwise, refine Abs(ψ) by U := U ∪ {y}.

Used in 2QBF solving [RTM04, BJS+16], RAReQS solver (recursive).

Florian Lonsing (TU Wien) Advances in QBF Reasoning 39 / 46

Solving (14): The Use of SAT Technology

Proposition
Given a PCNF ψ := Q̂.φ. If a clause C can be derived from φ by a SAT
solver, then C can be derived from ψ by QU-resolution.

Coupling QCDCL with SAT Solving:
Clauses learned from φ by CDCL are shared with QCDCL [SB05].
Models of φ found by SAT solver guide search process in QCDCL.
SAT-based generalizations of Q-resolution axioms in QCDCL [LES16].

Nested and Levelized SAT Solving:
Solve ∃B1.φ1 ∧ (∀B2.φ2) by solving ∃B1.φ1 ∧ (∃B2.¬φ2) with nested
SAT solvers, applicable to arbitrary nestings [BJT16, JTT16].
Invoke two SAT solvers S∀ and S∃ with respect to quantifier blocks,
prefix processed from left to right [THJ15].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 40 / 46

Workflow Overview

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

How to obtain the solution to a problem from a solved QBF?

Florian Lonsing (TU Wien) Advances in QBF Reasoning 41 / 46

Proofs and Certificates (1)

Q-Resolution Proofs:
QCDCL solvers produce derivations P of the empty clause/cube.
Proof P can be filtered out of derivations of all learned clauses/cubes.

Extracting Skolem/Herbrand Functions from Proofs:
By inspection of P, run time linear in |P| (|P| can be exponential).
Extraction from long-distance Q-resolution proofs [BJJW15].
Approaches to compute winning strategies from P [GGB11, ELW13].

Florian Lonsing (TU Wien) Advances in QBF Reasoning 41 / 46

Proofs and Certificates (1)

Definition (Extracting Herbrand functions [BJ11, BJ12])
Let P be a proof (Q-resolution DAG) of the empty clause ∅.

Visit clauses in P in topological ordering.
Inspect universal reduction steps C ′ = UR(C).
Update Herbrand functions of variables u reduced from C by C ′.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 41 / 46

Proofs and Certificates (2)

Example (Extracting Herbrand Functions [BJ11, BJ12])
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

∅

P1

(x)

(x ∨ u)

(x ∨ u ∨ y) (x ∨ u ∨ ȳ)

(x̄)

(x̄ ∨ ū)

(x̄ ∨ ū ∨ y) (x̄ ∨ ū ∨ ȳ)

Literal u reduced from (x ∨ u), update: fu(x) := (x).
Literal ū reduced from (x̄ ∨ ū), update: fu(x) := fu(x) ∨ ¬(x̄) = (x).
Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 42 / 46

Proofs and Certificates (3): Special Case

Example
Let ψ := ∃X∀Y. φ and ψ′ := ∀Y ∃X. φ be one-alternation QBFs.

If ψ satisfiable: all Skolem functions are constant.
If ψ′ unsatisfiable: all Herbrand functions are constant.
No need to produce derivations of the empty clause/cube.
QBF solvers can directly output values of Skolem/Herbrand functions.
Useful for modelling and solving problems in ΣP

2 and ΠP
2 .

QDIMACS output format specification.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 43 / 46

Outlook and Future Work

Florian Lonsing (TU Wien) Advances in QBF Reasoning 44 / 46

Outlook and Future Work (1)

QBF in Practice:
QBF tools are not (yet) a push-button technology.
Pitfalls: Tseitin encodings, premature preprocessing.
Goal: integrated workflow without the need for manual intervention.

Challenges:
Extracting proofs and certificates in workflows including preprocessing
[HSB14a, HSB14b] and incremental solving [MMLB12, LE14].
Integrating dependency schemes [SS09, LB10b, VG11, PSS16] in
workflows to relax the linear quantifier ordering.
Implementations of QCDCL do not harness the full power of
Q-resolution [Jan16].
Combining strengths of orthogonal solving approaches.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 44 / 46

Outlook and Future Work (2)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

conformant-planning-bomb

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

conformant-planning-dungeon

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

planning-CTE

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

qbf-hardness

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

reduction-finding

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

sauer-reimer

QBF Gallery 2013 application benchmarks [LSVG16].
6 sets, 150 formulas each, 900 sec timeout, 7 GB memory limit.
Diverse solver performance depending on implemented approaches.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 45 / 46

Outlook and Future Work (3)

Take Home Messages:
Assuming that NP 6= PSPACE, QBF is more difficult than SAT. . .
. . . which is reflected in the complexity of solver implementations. . .
. . . but allows for exponentially more succinct encodings than SAT.
The computational hardness of QBF motivates exploring alternative
approaches (e.g. CEGAR, expansion) in addition to QCDCL.
Number of quantifier alternations vs. observed hardness.
Document and publish your tools and benchmarks!
Upcoming QBFEVAL: http://www.qbflib.org/qbfeval16.php

Florian Lonsing (TU Wien) Advances in QBF Reasoning 46 / 46

http://www.qbflib.org/qbfeval16.php

Appendix

Florian Lonsing (TU Wien) Advances in QBF Reasoning 47 / 46

[Appendix] Syntax

Definition (QBFs as First-Order Logic Formulas [SLB12])
Mapping J·K : QBF → FOL with respect to unary FOL predicate p:

J∃x .φK = ∃x .JφK
Jφ ∨ ψK = JφK ∨ JψK

JxK = p(x)

J>K = p(true)

J∀x .φK = ∀x .JφK
Jφ ∧ ψK = JφK ∧ JψK

J¬ψK = ¬JψK
J⊥K = p(false)

It holds that p(true) (p(false)) is true (false) in every FOL interpretation.

Proposition ([SLB12])
The QBF ψ is satisfiable iff JψK ∧ p(true) ∧ ¬p(false) is satisfiable.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 47 / 46

[Appendix] Encodings: QParity

Q̂W .φ := ∃x1, x2, x3∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 48 / 46

[Appendix] Encodings: QParity

Q̂W .φ := ∃x1, x2, x3∀y∃t1, t2, t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 48 / 46

[Appendix] Encodings: QParity

Q̂S .φ := ∃x1, x2, x3 ∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 48 / 46

[Appendix] Encodings: QParity

Q̂S .φ := ∃x1, x2, x3, t1, t2∀y∃t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)

Florian Lonsing (TU Wien) Advances in QBF Reasoning 48 / 46

[Appendix] Solving: The Use of SAT Technology

Example (Clause Selection and Clausal Abstraction [JM15b, RT15])
Let ψ := ∀X∃Y. φ be a one-alternation QBF, φ a CNF.

ψ unsatisfiable iff, for some x ∈ B|X |, ∃Y. φ[X/x] unsatisfiable.
Think of x ∈ B|X | as a selection φxS ⊆ φ of clauses.
Clause C ∈ φxS iff C not satisfied by x, i.e. C [X/x] 6= >.
If ∃Y. φxS [X/x] unsatisfiable then ∃Y. φ[X/x] and ψ unsatisfiable.
Otherwise, consider model y ∈ B|Y | of ∃Y. φxS [X/x].
Find new x′ ∈ B|X | such that there exists C ∈ φx′

S with C [Y /y] 6= >.
If no such x′ exists then ψ is satisfiable.
CEGAR: find candidate solutions x and counterexamples y by SAT
solving, refinement step blocks unsuccessful selections φxS .

Florian Lonsing (TU Wien) Advances in QBF Reasoning 49 / 46

References

Florian Lonsing (TU Wien) Advances in QBF Reasoning 50 / 46

References I

Please note: since the duration of this talk is limited, the list of references below is incomplete
and does not reflect the history and state of the art in QBF research in full accuracy.

[AB02] Abdelwaheb Ayari and David A. Basin.
QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability
Solvers.
In FMCAD, volume 2517 of LNCS, pages 187–201. Springer, 2002.

[BB09] Hans Kleine Büning and Uwe Bubeck.
Theory of Quantified Boolean Formulas.
In Handbook of Satisfiability, volume 185 of FAIA, pages 735–760. IOS Press,
2009.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs.
In TACAS, volume 1579 of LNCS, pages 193–207. Springer, 1999.

[BCJ14] Olaf Beyersdorff, Leroy Chew, and Mikolas Janota.
On unification of QBF resolution-based calculi.
In Proc. of the 39th Int. Symbosium on Mathematical Foundations of Computer
Science (MFCS), volume 8635 of LNCS, pages 81–93. Springer, 2014.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 50 / 46

References II

[BCJ15] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota.
Proof Complexity of Resolution-based QBF Calculi.
In STACS, volume 30 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 76–89. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[BCJ16] Olaf Beyersdorff, Leroy Chew, and Mikolas Janota.
Extension Variables in QBF Resolution.
Electronic Colloquium on Computational Complexity (ECCC), 23:5, 2016.
Beyond NP Workshop 2016 at AAAI-16.

[Bie04] Armin Biere.
Resolve and Expand.
In SAT, volume 3542 of LNCS, pages 59–70. Springer, 2004.

[BJ11] Valeriy Balabanov and Jie-Hong R. Jiang.
Resolution Proofs and Skolem Functions in QBF Evaluation and Applications.
In CAV, volume 6806 of LNCS, pages 149–164. Springer, 2011.

[BJ12] Valeriy Balabanov and Jie-Hong R. Jiang.
Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45–65, 2012.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 51 / 46

References III

[BJJW15] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena Widl.
Efficient Extraction of QBF (Counter)models from Long-Distance Resolution
Proofs.
In AAAI, pages 3694–3701. AAAI Press, 2015.

[BJS+16] Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan Mishchenko, and
Robert K. Brayton.
2QBF: Challenges and Solutions.
In SAT, volume 9710 of LNCS, pages 453–469. Springer, 2016.

[BJT16] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi.
Solving QBF Instances with Nested SAT Solvers.
In Beyond NP Workshop 2016 at AAAI-16, 2016.

[BK07] Uwe Bubeck and Hans Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In SAT, volume 4501 of LNCS, pages 244–257. Springer, 2007.

[BKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 52 / 46

References IV

[BLS11] Armin Biere, Florian Lonsing, and Martina Seidl.
Blocked Clause Elimination for QBF.
In CADE, volume 6803 of LNCS, pages 101–115. Springer, 2011.

[BM08] Marco Benedetti and Hratch Mangassarian.
QBF-Based Formal Verification: Experience and Perspectives.
JSAT, 5(1-4):133–191, 2008.

[BWJ14] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang.
QBF Resolution Systems and Their Proof Complexities.
In SAT, volume 8561 of LNCS, pages 154–169. Springer, 2014.

[CDG+15] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner,
and Stefan Woltran.
Methods for solving reasoning problems in abstract argumentation - A survey.
Artif. Intell., 220:28–63, 2015.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM, 50(5):752–794, 2003.

[CGS98] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI, pages 262–267. AAAI Press / The MIT Press, 1998.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 53 / 46

References V

[CHR16] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess.
Structural Synthesis for GXW Specifications.
CoRR, abs/1605.01153, 2016.
To appear in the proceedings of CAV 2016, LNCS, Springer.

[DHK05] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz.
Bounded Model Checking with QBF.
In SAT, volume 3569 of LNCS, pages 408–414. Springer, 2005.

[Egl94] Uwe Egly.
On the Value of Antiprenexing.
In LPAR, volume 822 of LNCS, pages 69–83. Springer, 1994.

[Egl16] Uwe Egly.
On Stronger Calculi for QBFs.
CoRR, abs/1604.06483, 2016.
To appear in the proceedings of SAT 2016, LNCS, Springer.

[ELW13] Uwe Egly, Florian Lonsing, and Magdalena Widl.
Long-Distance Resolution: Proof Generation and Strategy Extraction in
Search-Based QBF Solving.
In LPAR, volume 8312 of LNCS, pages 291–308. Springer, 2013.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 54 / 46

References VI

[EST+03] Uwe Egly, Martina Seidl, Hans Tompits, Stefan Woltran, and Michael Zolda.
Comparing Different Prenexing Strategies for Quantified Boolean Formulas.
In SAT, volume 2919 of LNCS, pages 214–228. Springer, 2003.

[ETW02] Uwe Egly, Hans Tompits, and Stefan Woltran.
On Quantifier Shifting for Quantified Boolean Formulas.
In In Proceedings of the SAT-02 Workshop on Theory and Applications of
Quantified Boolean Formulas (QBF-02, pages 48–61, 2002.

[FR05] Wolfgang Faber and Francesco Ricca.
Solving Hard ASP Programs Efficiently.
In LPNMR, volume 3662 of LNCS, pages 240–252. Springer, 2005.

[FT14] Bernd Finkbeiner and Leander Tentrup.
Fast DQBF Refutation.
In SAT, volume 8561 of LNCS, pages 243–251. Springer, 2014.

[FT15] Bernd Finkbeiner and Leander Tentrup.
Detecting Unrealizability of Distributed Fault-tolerant Systems.
Logical Methods in Computer Science, 11(3), 2015.

[GB13] Alexandra Goultiaeva and Fahiem Bacchus.
Recovering and Utilizing Partial Duality in QBF.
In SAT, volume 7962 of LNCS, pages 83–99. Springer, 2013.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 55 / 46

References VII

[GGB11] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus.
A Uniform Approach for Generating Proofs and Strategies for Both True and False
QBF Formulas.
In IJCAI, pages 546–553. IJCAI/AAAI, 2011.

[Gho16] GhostQ: A QBF Solver, 2010–2016.
http://www.cs.cmu.edu/~wklieber/ghostq/.

[GMN09] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano.
Reasoning with Quantified Boolean Formulas.
In Handbook of Satisfiability, volume 185 of FAIA, pages 761–780. IOS Press,
2009.

[GMN10a] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano.
QuBE7.0.
JSAT, 7(2-3):83–88, 2010.

[GMN10b] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano.
sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning.
In SAT, volume 6175 of LNCS, pages 85–98. Springer, 2010.

[GNT02] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Learning for Quantified Boolean Logic Satisfiability.
In AAAI, pages 649–654. AAAI Press / The MIT Press, 2002.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 56 / 46

http://www.cs.cmu.edu/~wklieber/ghostq/

References VIII

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean
Formulas.
JAIR, 26:371–416, 2006.

[GNT07] E. Giunchiglia, M. Narizzano, and A. Tacchella.
Quantifier Structure in Search-Based Procedures for QBFs.
TCAD, 26(3):497–507, 2007.

[GT14] Adria Gascón and Ashish Tiwari.
A Synthesized Algorithm for Interactive Consistency.
In NASA Formal Methods, volume 8430 of LNCS, pages 270–284. Springer, 2014.

[HJL+15] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.
Clause Elimination for SAT and QSAT.
JAIR, 53:127–168, 2015.

[HSB14a] Marijn Heule, Martina Seidl, and Armin Biere.
A Unified Proof System for QBF Preprocessing.
In IJCAR, volume 8562 of LNCS, pages 91–106. Springer, 2014.

[HSB14b] Marijn Heule, Martina Seidl, and Armin Biere.
Efficient extraction of Skolem functions from QRAT proofs.
In FMCAD, pages 107–114. IEEE, 2014.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 57 / 46

References IX

[HSM+14] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong, and Husam
Abu-Haimed.
Dominant Controllability Check Using QBF-Solver and Netlist Optimizer.
In SAT, volume 8561 of LNCS, pages 227–242. Springer, 2014.

[Jan16] Mikolás Janota.
On Q-Resolution and CDCL QBF Solving.
In SAT, volume 9710 of LNCS, pages 402–418. Springer, 2016.

[JB07] Toni Jussila and Armin Biere.
Compressing BMC Encodings with QBF.
Electr. Notes Theor. Comput. Sci., 174(3):45–56, 2007.

[JBS+07] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and Christoph M.
Wintersteiger.
A First Step Towards a Unified Proof Checker for QBF.
In SAT, volume 4501 of LNCS, pages 201–214. Springer, 2007.

[JKMC12] Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke.
Solving QBF with counterexample guided refinement.
In SAT, volume 7317 of LNCS, pages 114–128. Springer, 2012.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 58 / 46

References X

[JKMSC16] Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke.
Solving QBF with counterexample guided refinement.
Artificial Intelligence, 234:1–25, 2016.

[JM13] Mikolás Janota and João Marques-Silva.
On Propositional QBF Expansions and Q-Resolution.
In SAT, volume 7962 of LNCS, pages 67–82. Springer, 2013.

[JM15a] Mikolás Janota and Joao Marques-Silva.
Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

[JM15b] Mikolás Janota and Joao Marques-Silva.
Solving QBF by Clause Selection.
In IJCAI, pages 325–331. AAAI Press, 2015.

[JS11a] Mikolás Janota and João P. Marques Silva.
Abstraction-Based Algorithm for 2QBF.
In SAT, volume 6695 of LNCS, pages 230–244. Springer, 2011.

[JS11b] Mikolás Janota and João P. Marques Silva.
On Deciding MUS Membership with QBF.
In CP, volume 6876 of LNCS, pages 414–428. Springer, 2011.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 59 / 46

References XI

[JTT16] Tomi Janhunen, Shahab Tasharrofi, and Eugenia Ternovska.
SAT-to-SAT: Declarative Extension of SAT Solvers with New Propagators.
In AAAI, pages 978–984. AAAI Press, 2016.

[KSGC10] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke.
A Non-prenex, Non-clausal QBF Solver with Game-State Learning.
In SAT, volume 6175 of LNCS, pages 128–142. Springer, 2010.

[Kul99] Oliver Kullmann.
On a Generalization of Extended Resolution.
Discrete Applied Mathematics, 96-97:149–176, 1999.

[LB08] Florian Lonsing and Armin Biere.
Nenofex: Expanding NNF for QBF Solving.
In SAT, volume 4996 of LNCS, pages 196–210. Springer, 2008.

[LB10a] Florian Lonsing and Armin Biere.
DepQBF: A Dependency-Aware QBF Solver.
JSAT, 7(2-3):71–76, 2010.

[LB10b] Florian Lonsing and Armin Biere.
Integrating Dependency Schemes in Search-Based QBF Solvers.
In SAT, volume 6175 of LNCS, pages 158–171. Springer, 2010.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 60 / 46

References XII

[LB11] Florian Lonsing and Armin Biere.
Failed Literal Detection for QBF.
In SAT, volume 6695 of LNCS, pages 259–272. Springer, 2011.

[LBB+15] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl.
Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimination.
In LPAR, volume 9450 of LNCS, pages 418–433. Springer, 2015.

[LE14] Florian Lonsing and Uwe Egly.
Incremental QBF Solving.
In CP, volume 8656 of LNCS, pages 514–530. Springer, 2014.

[LEG13] Florian Lonsing, Uwe Egly, and Allen Van Gelder.
Efficient clause learning for quantified boolean formulas via QBF pseudo unit
propagation.
In SAT, volume 7962 of LNCS, pages 100–115. Springer, 2013.

[LES16] Florian Lonsing, Uwe Egly, and Martina Seidl.
Q-Resolution with Generalized Axioms.
CoRR, abs/1604.05994, 2016.
To appear in the proceedings of SAT 2016, LNCS, Springer.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 61 / 46

References XIII

[Let02] Reinhold Letz.
Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas.
In TABLEAUX, volume 2381 of LNCS, pages 160–175. Springer, 2002.

[Lib05] Paolo Liberatore.
Redundancy in logic I: CNF propositional formulae.
Artif. Intell., 163(2):203–232, 2005.

[LSVG16] Florian Lonsing, Martina Seidl, and Allen Van Gelder.
The QBF Gallery: Behind the scenes.
Artif. Intell., 237:92–114, 2016.

[MMLB12] Paolo Marin, Christian Miller, Matthew D. T. Lewis, and Bernd Becker.
Verification of partial designs using incremental QBF solving.
In DATE, pages 623–628. IEEE, 2012.

[MS72] Albert R. Meyer and Larry J. Stockmeyer.
The Equivalence Problem for Regular Expressions with Squaring Requires
Exponential Space.
In 13th Annual Symposium on Switching and Automata Theory, pages 125–129.
IEEE Computer Society, 1972.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 62 / 46

References XIV

[MVB10] Hratch Mangassarian, Andreas G. Veneris, and Marco Benedetti.
Robust QBF Encodings for Sequential Circuits with Applications to Verification,
Debug, and Test.
IEEE Trans. Computers, 59(7):981–994, 2010.

[NW01] Andreas Nonnengart and Christoph Weidenbach.
Computing Small Clause Normal Forms.
In Handbook of Automated Reasoning, pages 335–367. Elsevier and MIT Press,
2001.

[PG86] David A. Plaisted and Steven Greenbaum.
A Structure-Preserving Clause Form Translation.
J. Symb. Comput., 2(3):293–304, 1986.

[PS09] Florian Pigorsch and Christoph Scholl.
Exploiting structure in an AIG based QBF solver.
In DATE, pages 1596–1601. IEEE, 2009.

[PSS16] Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider.
Long Distance Q-Resolution with Dependency Schemes.
In SAT, volume 9710 of LNCS, pages 500–518. Springer, 2016.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 63 / 46

References XV

[QCI14] QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean Formulas,
2014.
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf.

[RBM97] Anavai Ramesh, George Becker, and Neil V. Murray.
CNF and DNF Considered Harmful for Computing Prime Implicants/Implicates.
JAIR, 18(3):337–356, 1997.

[Rin07] Jussi Rintanen.
Asymptotically Optimal Encodings of Conformant Planning in QBF.
In AAAI, pages 1045–1050. AAAI Press, 2007.

[RT15] Markus N. Rabe and Leander Tentrup.
CAQE: A Certifying QBF Solver.
In FMCAD, pages 136–143. IEEE, 2015.

[RTM04] Darsh P. Ranjan, Daijue Tang, and Sharad Malik.
A Comparative Study of 2QBF Algorithms.
In SAT, 2004.

[SB05] Horst Samulowitz and Fahiem Bacchus.
Using SAT in QBF.
In CP, volume 3709 of LNCS, pages 578–592. Springer, 2005.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 64 / 46

http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

References XVI

[SC85] A. Prasad Sistla and Edmund M. Clarke.
The Complexity of Propositional Linear Temporal Logics.
J. ACM, 32(3):733–749, 1985.

[Sch78] Thomas J Schaefer.
On the Complexity of Some Two-Person Perfect-Information Games.
Journal of Computer and System Sciences, 16(2):185–225, 1978.

[Sha49] Claude Elwood Shannon.
The Synthesis of Two-Terminal Switching Circuits.
Bell System Technical Journal, 28(1):59–98, 1949.

[SLB12] Martina Seidl, Florian Lonsing, and Armin Biere.
qbf2epr: A Tool for Generating EPR Formulas from QBF.
In PAAR Workshop, volume 21 of EPiC Series, pages 139–148. EasyChair, 2012.

[SS09] Marko Samer and Stefan Szeider.
Backdoor Sets of Quantified Boolean Formulas.
JAR, 42(1):77–97, 2009.

[Sto76] Larry J. Stockmeyer.
The Polynomial-Time Hierarchy.
Theor. Comput. Sci., 3(1):1–22, 1976.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 65 / 46

References XVII

[THJ15] Kuan-Hua Tu, Tzu-Chien Hsu, and Jie-Hong R. Jiang.
QELL: QBF Reasoning with Extended Clause Learning and Levelized SAT Solving.
In SAT, volume 9340 of LNCS, pages 343–359. Springer, 2015.

[Tse68] G. S. Tseitin.
On the Complexity of Derivation in Propositional Calculus.
Studies in Constructive Mathematics and Mathematical Logic, 1968.

[VG11] Allen Van Gelder.
Variable Independence and Resolution Paths for Quantified Boolean Formulas.
In CP, volume 6876 of LNCS, pages 789–803. Springer, 2011.

[VG12] Allen Van Gelder.
Contributions to the Theory of Practical Quantified Boolean Formula Solving.
In CP, volume 7514 of LNCS, pages 647–663. Springer, 2012.

[VGWL12] Allen Van Gelder, Samuel B. Wood, and Florian Lonsing.
Extended Failed-Literal Preprocessing for Quantified Boolean Formulas.
In SAT, volume 7317, pages 86–99. Springer, 2012.

[ZM02a] Lintao Zhang and Sharad Malik.
Conflict Driven Learning in a Quantified Boolean Satisfiability Solver.
In ICCAD, pages 442–449. ACM / IEEE Computer Society, 2002.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 66 / 46

References XVIII

[ZM02b] Lintao Zhang and Sharad Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified
Boolean Formula Evaluation.
In CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

Florian Lonsing (TU Wien) Advances in QBF Reasoning 67 / 46

