
Incremental QBF Solving by DepQBF?

Florian Lonsing and Uwe Egly

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group
http://www.kr.tuwien.ac.at/

Abstract. The logic of quantified Boolean formulae (QBF) extends
propositional logic by explicit existential and universal quantification of
the variables. We present the search-based QBF solver DepQBF which
allows to solve a sequence of QBFs incrementally. The goal is to exploit
information which was learned when solving previous formulae in the
process of solving the next formula in a sequence. We illustrate incremen-
tal QBF solving and potential usage scenarios by examples. Incremental
QBF solving has the potential to considerably improve QBF-based work-
flows in many application domains.

Keywords: quantified Boolean formulae, QBF, search-based solving,
Q-resolution, clause learning, cube learning, incremental solving.

1 Introduction

Propositional logic (SAT) has been widely applied to encode problems from
model checking, formal verification, and synthesis. In these practical applica-
tions, an instance of a given problem is encoded as a formula. The satisfiability
of this formula is checked using a SAT solver. The result of the satisfiability
check is then mapped back and interpreted on the level of the problem instance.

Encodings of problems often give rise to sequences of closely related formulae
to be solved, in contrast to one single formula. A prominent example is SAT-
based bounded model checking (BMC) [1]. Rather than solving each formula in
the sequence individually, incremental solving [6] aims at employing information
that was learned when solving one formula for solving the next formulae. The
overall goal is to speed up the solving process of the entire sequence of formulae.

We consider the problem of incrementally solving a sequence of quantified
Boolean formulae (QBF). The decision problem of QBF is PSPACE-complete.
Existential and universal quantification together with possible quantifier alter-
nations in QBF potentially allow for exponentially more succinct encodings of
problems than propositional logic [2]. This property makes QBF an interesting
modelling language for practical applications.

Incremental QBF solving was first applied in the context of QBF-based
bounded model checking of partial designs [14]. We extended our QBF solver

? Supported by the Austrian Science Fund (FWF) under grant S11409-N23.

2 Lonsing and Egly

DepQBF [11, 12] by general-purpose incremental solving capabilities. Our ap-
proach adopts ideas from incremental SAT solving, it is application-independent
and hence applicable to QBF encodings of arbitrary problems. Furthermore,
our implementation is publicly available, it features APIs in the C and Java
languages and thus facilitates the use of incremental QBF solving in practice.1

We present incremental QBF solving from a general perspective. During the
solving process, QBF solvers learn information about a QBF in terms of re-
stricted inferences in the Q-resolution calculus. Information learned from previ-
ous QBFs must be maintained to prevent unsound inferences. Regarding practi-
cal applications, we illustrate the API of our incremental QBF solver DepQBF
by means of examples to make its use more accessible. Incremental QBF solving
has the potential to improve QBF-based workflows in many applications.

2 Quantified Boolean Formulae

A QBF ψ := Q̂. φ in prenex conjunctive normal form (PCNF) consists of a
quantifier-free propositional formula φ in CNF containing the variables V and a
quantifier prefix Q̂. The prefix Q̂ := Q1B1 . . . QnBn contains sets Bi of proposi-
tional variables and quantifiers Qi ∈ {∀,∃}. We assume that Bi 6= ∅,

⋃
Bi = V

and Bi ∩Bj = ∅ for i 6= j. The sequence of sets Bi introduces a linear ordering
of the variables: given two variables x, y, we define x < y if and only if x ∈ Bi,
y ∈ Bj and i < j. In the following, we consider QBFs in PCNF.

An assignment A : V → {t, f} is a (partial) mapping from the set of all
propositional variables V to truth values true (t) and false (f). To allow for
simple notation, we represent an assignment A as a set {l1, . . . , lk} of literals
where, for a variable x assigned by A, we have li = x (li = ¬x) if x is mapped
to t (f). Given a QBF ψ, a variable x ∈ Bi and the assignment A = {l} with
l = x (l = ¬x), the QBF ψ[A] under the assignment A is obtained from ψ by
replacing every occurrence of x in ψ with the syntactic truth constant > (⊥)
denoting true (false), deleting x from the prefix (along with QiBi if Bi = ∅) and
applying simplifications using the annihilator and identity properties of ∧, ∨, >
and ⊥ of Boolean algebra.

The semantics of QBF is defined recursively based on the syntactic structure.
The QBF ψ = > (ψ = ⊥), which consists of the syntactic truth constant true
(false), is satisfiable (unsatisfiable). The QBF ψ = ∃({x} ∪ B1) . . . QnBn. φ is
satisfiable if and only if ψ[x] or ψ[¬x] is satisfiable. The QBF ψ = ∀({x} ∪
B1) . . . QnBn. φ is satisfiable if and only if ψ[x] and ψ[¬x] is satisfiable.

Example 1. The QBF ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable. We assign the
variables in the ordering of the prefix. Both ψ[x] = ∃y. (y) and ψ[¬x] = ∃y. (¬y)
are satisfiable, since ψ[x, y] = > and ψ[¬x,¬y] = >, respectively.

1 DepQBF is free software: http://lonsing.github.io/depqbf/

Incremental QBF Solving by DepQBF 3

3 Search-Based QBF Solving with Learning

Modern search-based QBF solvers are based on an extension of the conflict-
driven clause learning approach (CDCL), which is applied in SAT solving [15].
In this QBF-specific approach called QCDCL [8, 10, 13, 16], a backtracking search
procedure related to the DPLL algorithm [4, 5] is used to generate assignments
to control the application of the inference rules in the Q-resolution calculus [3,
8]. New learned clauses and cubes are inferred and added to the formula.

In the following, we present the rules of the Q-resolution calculus to derive
learned clauses and cubes, called constraints, in QCDCL-based QBF solvers.
Given a QBF Q1B1 . . . QnBn. φ and a literal l of a variable x ∈ Bi, the quantifier
type of the variable x of l is denoted by q(l) where q(l) = ∀ (q(l) = ∃) if Qi = ∀
(Qi = ∃). To allow for a uniform presentation of the rules to derive clauses and
cubes in the calculus, we represent clauses and cubes as sets of literals.

C1 ∪ {p} C2 ∪ {¬p}
C1 ∪ C2

if {x,¬x} 6⊆ (C1 ∪C2), ¬p 6∈ C1, p 6∈ C2 and
either (1) C1,C2 are clauses and q(p) = ∃
or (2) C1,C2 are cubes and q(p) = ∀

(res)

C ∪ {l}
C

if {x,¬x} 6⊆ (C ∪ {l}) and either
(1) C is a clause, q(l) = ∀ and ∀l′ ∈ C : q(l′) = ∃ → l′ < l or
(2) C is a cube, q(l) = ∃ and ∀l′ ∈ C : q(l′) = ∀ → l′ < l

(red)

C
if {x,¬x} 6⊆ C and either (1) C ∈ φ with ψ = Q̂. φ or
(2) ψ[A] = > for an assignment A and C = (

∧
l∈A l)

(init)

The rule res defines Q-resolution with a pivot variable p. The constraints C1∪{p}
and C2∪{¬p} and the resolvent C1∪C2 must not contain complementary literals
and the quantifier type q(p) of the pivot variable is restricted to ∃ [3].

The rule red defines constraint reduction [3, 8], which deletes universal (ex-
istential) literals from a clause (cube) C which are maximal among the literals
in C with respect to the ordering of the quantifier prefix.

The rule init defines the axioms. Any clause C ∈ φ of a QBF ψ = Q̂. φ can
be used as a start point of a resolution derivation. Given an assignment A such
that ψ[A] = >, that is C ′[A] = > for all C ′ ∈ φ, the cube C = (

∧
l∈A l) can be

inferred as a start point of a cube resolution derivation. The application of the
rule init to infer cubes is also called model generation [8, 10, 16].

Due to the soundness of the calculus, a derived learned clause C ′ is added
conjunctively to ψ and has the property that Q̂. φ ≡ Q̂. (φ∧C ′). A derived learned
cube C ′ is added disjunctively to ψ and has the property that Q̂. φ ≡ Q̂. (φ∨C ′).

A QBF is unsatisfiable (satisfiable) if and only if the empty clause (cube)
can be derived using the rules res, red and init . In this case, the steps in the
derivations of the learned clauses (cubes) up to ∅ correspond to a Q-resolution
proof of the unsatisfiability (satisfiability) of ψ. We write ψ ` C if the clause
(cube) C can be derived from C using the rules of the Q-resolution calculus.

4 Lonsing and Egly

ψ0

↓

Solver

↓
(UN)SAT

ψ1

↓

Solver

↓
(UN)SAT

. . .

ψn

↓

Solver

↓
(UN)SAT

Fig. 1. Solving a sequence S := 〈ψ1, . . . , ψn〉 of PCNFs non-incrementally.

ψ0

↓

Solver

↓
(UN)SAT

LC ′0
−→

ψ1 :

φdel
1 ↓ φadd

1

Solver

↓
(UN)SAT

LC ′1
−→ . . .

LC ′n−1
−→

ψn :

φdel
n ↓ φadd

n

Solver

↓
(UN)SAT

Fig. 2. Solving a sequence S := 〈ψ1, . . . , ψn〉 of PCNFs incrementally.

Example 2. Given the satisfiable QBF ψ = ∀x∃y. (x∨¬y)∧(¬x∨y) from Exam-
ple 1. By the rule init , we generate the cubes C1 := (x∧ y) and C2 := (¬x∧¬y)
using the assignments A1 = {x, y} and A2 = {¬x,¬y}. Constraint reduction of
C1 and C2 by rule red produces the cubes C3 = (x) and C4 = (¬x), respectively.
Finally, resolution by rule res of C3 and C4 produces the empty cube.

Example 3. Given the unsatisfiable QBF ψ = ∀x∃y. (x∨¬y)∧ (¬x∨y)∧ (x∨y).
Resolution of the clauses (x∨¬y) and (x∨y) by the rule res produces the clause
C1 := (x). Finally, constraint reduction by rule red results in the empty clause.

4 Incremental QBF Solving

Let S := 〈ψ1, . . . , ψn〉 be a sequence of QBFs to be solved where ψi = Q̂i. φi. The
QBF ψi+1 = Q̂i+1. φi+1 is obtained from the previous QBF ψi by adding and
deleting the sets φaddi+1 and φdeli+1 of clauses, respectively: φi+1 = (φi \φdeli+1)∪φaddi+1 .

Similarly, the quantifier prefix Q̂i+1 of ψi+1 is obtained from Q̂i by adding and
deleting quantifiers, provided that in ψi+1 still all the variables are quantified.

In non-incremental solving (Fig. 1), the solver tackles each QBF ψi in S
from scratch. The entire formula is parsed and solving starts without using any
learned constraint that was inferred when solving previous QBFs ψj with j < i.

In incremental solving (Fig. 2), the solver retains in a correctness preserving
way a subset LC ′i−1 of the constraints that were learned from previously solved
QBFs in S in order to solve the current QBF ψi. The constraints in LC ′i−1 can
be used for inferences by the Q-resolution calculus. The choice of the set LC ′i−1
depends on the sets φaddi and φdeli of clauses that were added to and deleted from
the previous QBF ψi−1, respectively. For all constraints C ∈ LC ′i−1, it must
hold that C can be derived from ψi and hence ψi ` C. Due to the soundness of

Incremental QBF Solving by DepQBF 5

Q-resolution, in this case we have that (1) Q̂i. φi ≡ Q̂i. (φi ∧ C) if C ∈ LC ′i−1
is a clause and (2) Q̂i. φi ≡ Q̂i. (φi ∨ C) if C ∈ LC ′i−1 is a cube.

Compared to non-incremental solving, incremental solving has several ad-
vantages. First, the solver has to parse only the clauses φaddi which are added to
ψi−1 to obtain the new QBF ψi rather than the entire QBF ψi. In practice, an
incremental solver typically is called as a library from another application pro-
gram which generates the sequence S := 〈ψ1, . . . , ψn〉 of QBFs to be solved and
retrieves the result returned by the solver. The solver is configured to solve the
next QBF in S through its API. In contrast to that, a non-incremental solver is
called as a standalone program to solve each QBF in S, where the QBFs are first
written to hard disk, accessed by the solver and then parsed. This may result in
I/O overhead, which is avoided in incremental solving.

The addition of φaddi to the previous QBF ψi−1 can make the derivations of
cubes learned from ψi−1 invalid with respect to the current QBF ψi. Similarly,
the deletion of φdeli from the previous QBF ψi−1 can make the derivations of
learned clauses invalid. The reason is that the side conditions of the rule init ,
which held with respect to ψi−1, might no longer hold with respect to ψi.

Example 4. Let ψ′ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y) be obtained from
the satisfiable QBF ψ in Example 2 by adding the clause (x ∨ y). The QBF
ψ′ is unsatisfiable. Consider the cubes C1 to C4 inferred from ψ as shown in
Example 2. We have ψ′ 6 ` C2 and ψ′ 6 ` C4 but ψ′ ` C1 and ψ′ ` C3 because the
assignment A1 = {x, y} is still a model of ψ′ whereas A2 = {¬x,¬y} is not.

Example 5. Let ψ′ = ∀x∃y. (x∨¬y)∧(¬x∨y) be obtained from the unsatisfiable
ψ in Example 3 by deleting the clause (x ∨ y). The QBF ψ′ is satisfiable. We
have ψ′ 6 ` C1 and no clauses can be derived from ψ′ by the rules red and res.

If the set LC ′i−1 of constraints which is retained contains constraints C for
which ψi 6 ` C then the solver might perform unsound inferences on ψi by the
Q-resolution calculus, using the constraints in LC ′i−1.

Keeping learned constraints in incremental solving might give speedups in
the solving time, as illustrated in the following experiment.

Proposition 1 ([9, 10]). ψC
n := ∀x1∃y2 . . . ∀x2n−1∃y2n.

∧n−1
i=0 [(x2i+1∨¬y2i+2)∧

(¬x2i+1 ∨ y2i+2)] is a class of satisfiable QBFs. For each QBF ψC
n , the length

of the shortest cube resolution proof of satisfiability of ψC
n is exponential in n.

Let S := 〈ψC
10, . . . , ψ

C
20〉 be the sequence of QBFs by Proposition 1 for

n = 10, 11, . . . , 20. The left part of the plot on the right shows that the num-
ber of learned cubes (y-axis, in millions) carried out by DepQBF when solv-
ing S incrementally (“inc”) and non-incrementally (“noninc”) scales exponen-
tially with the size parameter n (10 . . . 20 on the x-axis). Consider the reversed
sequence S′ = 〈ψC

20, . . . , ψ
C
10〉 and the right part of the plot (20 . . . 10 on the

x-axis). When solving S′ incrementally, then all the cubes learned when solv-
ing ψC

i in S′ can be fully retained and used to solve the next QBF ψC
j with

j < i. No new cubes are inferred. This is possible because clauses are only

6 Lonsing and Egly

0

0.2m

0.4m

0.6m

0.8m

1.0m

10 15 20 15 10

inc

noninc

deleted from ψC
i to obtain ψC

j for j <
i in S′ but not added. Therefore, for
all cubes C ′ derived from ψC

i , it holds
that ψC

j ` C ′′ for a subcube C ′′ ⊆
C ′. The subcube C ′′ is obtained from
C ′ by removing any literals which no
longer occur in ψC

j . For further ex-
periments, we refer to the technical
reports related to DepQBF [12] and
QBF-based conformant planning by
incremental QBF solving [7].

5 Implementation of DepQBF

In incremental solving, the set of learned constraints must be maintained across
different calls of the solver. Regarding the learned clauses, the implementation
of DepQBF [12] is based on the idea of selector variables from incremental SAT
solving [6]. Thereby, a fresh variable v is added to each clause in the QBF
ψ = Q1B1 . . . QnBn. φ so that the clause C ∪ {v} is added to ψ instead of C.
The selector variables are existentially quantified in a separate block V ′ at the
left end of the quantifier prefix, which has the form ∃V ′Q1B1 . . . QnBn. φ. If
new clauses are derived using the rule res of the Q-resolution calculus, then
the selector variables are always transferred to the derived clauses. In order to
remove a clause C from the CNF of ψ including all learned clauses derived from
C, the solver assigns the selector variable v ∈ C to true. This causes v to be
replaced by > in every clause, which effectively removes the clauses. They can
no longer be used to make inferences by the Q-resolution calculus.

Regarding the learned cubes, we keep only cubes derived by applications of
the rule init . For every cube C which is kept, the side condition of this rule with
respect to the current QBF ψ′ must hold: ψ′[A] = > for the assignment A which
was used to derive C = (

∧
l∈A l).

The API of DepQBF provides the user with functions to manipulate the
input formula by incrementally adding and deleting clauses and variables. As
an additional API feature, the user can add and delete sets of clauses by means
of push and pop operations. This way, the set of clauses of the input formula
is organized as a sequence of frames on a stack. The same selector variable is
added to all clauses of a particular stack frame. As a unique feature, DepQBF
maintains the selector variables internally, which are invisible to the user. This
design increases the usability of the solver from a user’s perspective.

We illustrate the API of DepQBF by the code example in Fig. 3. The source
release of DepQBF comes with further examples.2 A solver object is created us-
ing the function qdpll_create. We create the quantifier prefix ∀x∃y by calling
qdpll_new_scope_at_nesting followed by qdpll_add to add the variables x

2 DepQBF tutorial: http://lonsing.github.io/depqbf/depqbf-in-practice.pdf

Incremental QBF Solving by DepQBF 7

int main (int argc, char ** argv) {

QDPLL *s = qdpll_create();

...

qdpll_new_scope_at_nesting

(s,QDPLL_QTYPE_FORALL,1);

qdpll_add(s,1); qdpll_add(s,0);

qdpll_new_scope_at_nesting

(s,QDPLL_QTYPE_EXISTS,2);

qdpll_add(s,2); qdpll_add(s,0);

qdpll_add(s,1); qdpll_add(s,-2);

qdpll_add(s,0);

qdpll_push(s);

...//continues on right column.

...//continued from left column.

qdpll_add(s,2); qdpll_add(s,0);

QDPLLResult res = qdpll_sat(s);

assert(res == QDPLL_RESULT_UNSAT);

assert(qdpll_get_value (s,1) ==

QDPLL_ASSIGNMENT_FALSE);

qdpll_reset(s);

qdpll_pop(s);

res = qdpll_sat(s);

assert(res == QDPLL_RESULT_SAT);

qdpll_delete (s); }

Fig. 3. DepQBF API usage example. Some configuration code was omitted for brevity.

and y which we encode by the unsigned integers 1 and 2, respectively.3 Then we
add the clauses (x ∨ ¬y) by qdpll_add where the negative integer -2 encodes
the negative literal ¬y and qdpll_add(s,0) closes the clause. A new frame of
clauses is allocated by qdpll_push. We add the clause (y) to the new frame
(right column in Fig. 3). The call of qdpll_sat starts the solver given the cur-
rent QBF ψ = ∀x∃y. (x ∨ ¬y) ∧ (y). The function qdpll_get_value returns a
partial countermodel of the QBF: x was assigned to false which explains the
unsatisfiability of ψ since ψ[¬x] = (¬y) ∧ (y). By calling qdpll_pop we remove
the clauses of the most recently added frame, which contains only (y). Thus the
new QBF is ψ = ∀x∃y. (x∨¬y), which is satisfiable as found out by qdpll_sat.

The API of DepQBF allows to add new variables at any position in the
prefix and provides functions to inspect the prefix. Variables and clauses can not
explicitly deleted. Instead, a garbage collection phase can be triggered through
the API which deletes all the clauses, variables and quantifiers which have been
effectively removed by previous calls of qdpll_pop. The push/pop functionality
of DepQBF is particularly useful for sequences S of QBFs where a large part of
the CNFs is shared between the individual QBFs in S.

Originally, DepQBF is written in C. The release of version 3.03 (or later)
comes with the Java API DepQBF4J, which allows to call DepQBF as a library
from Java programs and thus makes incremental QBF solving more accessible.

6 Conclusion

We presented an overview of incremental QBF solving and our incremental QBF
solver DepQBF. Incremental solving is useful to solve sequences of related for-
mulae. Information learned from previously solved formulae in terms of derived
clauses and cubes can be employed to solve the next formulae in the sequence.

3 DepQBF takes input in QDIMACS format: http://www.qbflib.org/qdimacs.html

8 Lonsing and Egly

We implemented a simple approach to keep only particular cubes derived by
model generation across incremental solver calls. As future work, we consider
more sophisticated approaches to also keep cubes derived by Q-resolution.

Another important direction is the combination of incremental QBF solving
with advanced techniques such as preprocessing and the generation of proofs and
certificates. Currently, these techniques are implemented in separate tools. It is
necessary to efficiently integrate them into a uniform framework to leverage the
full power of the state of the art of QBF reasoning in practical applications.

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Proc. TACAS, volume 1579 of LNCS. Springer, 1999.

2. U. Bubeck and H. Kleine Büning. Encoding Nested Boolean Functions as Quanti-
fied Boolean Formulas. JSAT, 8(1/2):101–116, 2012.

3. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean
Formulas. Inf. Comput., 117(1):12–18, 1995.

4. M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An Algorithm to Eval-
uate Quantified Boolean Formulae and Its Experimental Evaluation. J. Autom.
Reasoning, 28(2):101–142, 2002.

5. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

6. N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. Electr.
Notes Theor. Comput. Sci., 89(4):543–560, 2003.

7. U. Egly, M. Kronegger, F. Lonsing, and A. Pfandler. Conformant Planning as a
Case Study of Incremental QBF Solving. CoRR (submitted), 2014.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and
Learning in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res.
(JAIR), 26:371–416, 2006.

9. M. Janota, R. Grigore, and J. Marques-Silva. On QBF Proofs and Preprocessing.
In Proc. LPAR, volume 8312 of LNCS. Springer, 2013.

10. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In Proc. TABLEAUX, volume 2381 of LNCS. Springer, 2002.

11. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver. JSAT,
7(2-3):71–76, 2010.

12. F. Lonsing and U. Egly. Incremental QBF Solving. CoRR, abs/1402.2410, 2014.
13. F. Lonsing, U. Egly, and A. Van Gelder. Efficient Clause Learning for Quantified

Boolean Formulas via QBF Pseudo Unit Propagation. In Proc. SAT, volume 7962
of LNCS. Springer, 2013.

14. P. Marin, C. Miller, M. D. T. Lewis, and B. Becker. Verification of Partial Designs
using Incremental QBF Solving. In Proc. DATE. IEEE, 2012.

15. J. P. Marques Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT
Solvers. In Handbook of Satisfiability, volume 185 of FAIA. IOS Press, 2009.

16. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In Proc. CP, volume 2470 of
LNCS. Springer, 2002.

